Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ahmed, Hassan

  • Google
  • 5
  • 9
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Analysing entrapped pores in concrete via x-ray computed tomography : Influence of workability and compaction time10citations
  • 2024Methods for Assessing Concrete Segregation Due to Compaction2citations
  • 2024Evaluating Concrete Compaction: A Multi-modal Approach10citations
  • 2021Factors for compactibility and risk of segregation for concretecitations
  • 2021Factors for compactibility and risk of segregation for concrete - Report for contract research project "Compact Air" ; Betonin tiivistettävyyteen ja erottumisherkkyyteen vaikuttavat tekijät – Raportti tilaustutkimusprojektista "Compact Air"citations

Places of action

Chart of shared publication
Punkki, Jouni
4 / 11 shared
Kuva, Jukka
1 / 7 shared
Oey, Tandre
2 / 15 shared
Ojala, Teemu
2 / 7 shared
Leivo, Markku
2 / 11 shared
Tauqir, Ammad
2 / 3 shared
Al-Neshawy, Fahim
2 / 19 shared
Chen, Yanjuan
2 / 3 shared
Vehmas, Tapio
2 / 7 shared
Chart of publication period
2024
2021

Co-Authors (by relevance)

  • Punkki, Jouni
  • Kuva, Jukka
  • Oey, Tandre
  • Ojala, Teemu
  • Leivo, Markku
  • Tauqir, Ammad
  • Al-Neshawy, Fahim
  • Chen, Yanjuan
  • Vehmas, Tapio
OrganizationsLocationPeople

article

Methods for Assessing Concrete Segregation Due to Compaction

  • Punkki, Jouni
  • Ahmed, Hassan
Abstract

<jats:title>Abstract</jats:title><jats:p>Segregation in concrete significantly affects its durability and structural integrity by introducing local variance in both the strength distribution and the modulus of elasticity within a structural element. Additionally, segregation can lead to durability complications, such as shrinkage induced cracking. Recent observations have identified such segregation issues in already existing structures, underscoring the importance of assessing segregation. In this study, we evaluate the extent of segregation in normally vibrated concrete specimens, which were subjected to different vibration durations and vibrated using either table or poker vibrators. The research introduces three segregation indices to assess this phenomenon. One index relies on the standard deviation of densities across multiple slices of each specimen, while the other two utilize Digital Image Processing (DIP) to analyse the distribution of aggregates in horizontal and vertical slices, respectively. High correlations were found between the density-based index and vibration time for both poker-vibrated and table-vibrated specimens. The DIP-based indices showed strong correlations with the density-based approach, offering quicker alternatives for assessing segregation. The study further proposes classification levels for segregation based on these methods and reveals the negative impact of increased air entrainment on segregation. These findings provide insights for optimizing concrete compaction processes and understanding segregation.</jats:p>

Topics
  • density
  • strength
  • elasticity
  • durability