People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bialas, Oktawian
Silesian University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2023CORROSION BEHAVIOUR OF ANNEALED 42CrMo4 STEEL
- 2023Characterization of Arboblend V2 Nature Textured Surfaces Obtained by Injection Moldingcitations
- 2022Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technologycitations
- 2020The Influence of Hybrid Surface Modification on the Selected Properties of CP Titanium Grade II Manufactured by Selective Laser Meltingcitations
Places of action
Organizations | Location | People |
---|
article
Hardfacing of mild steel with wear-resistant Ni-based powders containing tungsten carbide particles using powder plasma transferred arc welding technology
Abstract
<jats:title>Abstract</jats:title><jats:p>This study explores the use of powder plasma transferred arc welding (PPTAW) as a surface layer deposition technology to form hardfaced coatings to improve upon the wear resistance of mild steel. Hardfaced layers were prepared using the PPTAW process with two different wear-resistant powders: PG 6503 (NiSiB + 60% WC) and PE 8214 (NiCrSiB + 45% WC). By varying the PPTAW process parameters of plasma gas flow rate (PGFR) and plasma arc current, hardfaced layers were prepared. Microscopic examinations, penetration tests, hardness tests, and abrasive wear resistance tests were carried out on the prepared samples. Hardfacings prepared with PG 6503 had a hardness of 46.3–48.3 HRC, while those prepared with PE 8214 had a hardness of 52.7–58.3 HRC. The microhardness of the matrix material was in the range of 573.3–893.0 HV, while that of the carbides was in the range of 2128.7–2436.3 HV. The abrasive wear resistance of the mild steel was improved after deposition of hardfaced layers by up to 5.7 times that of abrasion-resistant heat-treated steel, Hardox 400, having a nominal hardness of approximately 400 HV. The hardness and wear resistance were increased upon addition of Cr as an alloying element. Increasing the PGFR increased the hardness and wear resistance of the hardfacings, as well as increasing the number of surface cracks. Increasing the plasma transferred arc (PTA) current resulted in hardfacings with fewer cracks but lowered the wear resistance.</jats:p>