Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Verma, Gaurav

  • Google
  • 2
  • 2
  • 15

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Morphology and surface analyses for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> perovskite thin films treated with versatile solvent–antisolvent vapors12citations
  • 2018Effect of nanocrystals concentration on optical and luminescent properties of PVK:ZnSe nanocomposites3citations

Places of action

Chart of shared publication
Awol, Nasir
1 / 1 shared
Kumar, Praveen
1 / 13 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Awol, Nasir
  • Kumar, Praveen
OrganizationsLocationPeople

article

Effect of nanocrystals concentration on optical and luminescent properties of PVK:ZnSe nanocomposites

  • Verma, Gaurav
  • Kumar, Praveen
Abstract

<jats:title>Abstract</jats:title><jats:p>This work presents a systematic study of the effect of ZnSe nanocrystals (NCs) concentration on the optical and luminescent properties of poly N-vinylcarbazole (PVK) polymer nanocomposites. The ZnSe nanocrystals were synthesized by a simple coprecipitation chemical route, while PVK:ZnSe nanocomposite films were fabricated using the spin coating technique. The samples were characterized by XRD, TEM, SEM, UV-Vis and fluorescence techniques. The X-ray diffraction and TEM studies confirmed the particle size, microstructure and spherical shape of the synthesized nanocrystals. The ZnSe nanocrystals in PVK caused a decrease in optical gap with increasing concentration of nanocrystals. The emission spectra exhibited augmentation in intensity up to 70 wt.% of nanoparticles while further addition resulted in a decrease in luminescence. The structure-property relationships obtained for the present system are important for developing low cost illumination devices.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • microstructure
  • polymer
  • scanning electron microscopy
  • x-ray diffraction
  • transmission electron microscopy
  • luminescence
  • spin coating