Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Steinberg, Julius

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Development of a method and technology for the production of 3D knitted reinforcement grids2citations

Places of action

Chart of shared publication
Zierold, Konrad
1 / 3 shared
Cherif, Chokri
1 / 112 shared
Hahn, Lars
1 / 17 shared
Rittner, Steffen
1 / 3 shared
Friese, Danny
1 / 8 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Zierold, Konrad
  • Cherif, Chokri
  • Hahn, Lars
  • Rittner, Steffen
  • Friese, Danny
OrganizationsLocationPeople

article

Development of a method and technology for the production of 3D knitted reinforcement grids

  • Zierold, Konrad
  • Cherif, Chokri
  • Hahn, Lars
  • Rittner, Steffen
  • Friese, Danny
  • Steinberg, Julius
Abstract

<jats:title>Abstract</jats:title><jats:p>The use of fibre-reinforced plastic composites (FRP) for lightweight construction solutions is becoming increasingly important. The processing of 2D scrims into complete 3D FRP components has been carried out with the help of complex manual assembly steps. The disadvantages of this procedure are distortions in the textile and, thus, deviations in the fibre alignments from the calculated load path.</jats:p><jats:p>This paper presents a newly developed basic technology for the production of 3D reinforcing grids with variable warp and weft yarn section lengths based on multiaxial warp knitting technology. For this purpose, a new type of machine module and associated control technology for the production of weft yarn reserves on a multiaxial warp knitting machine was developed. In combination with technology from previous research work on the production of warp yarn lengths suitable for component contours, a basis was created for the production of 3D reinforcing grids.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • composite