Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sałaciński, Michał

  • Google
  • 2
  • 4
  • 32

Instytut Techniczny Wojsk Lotniczych

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019Carbon Fiber Reinforced Polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubes32citations
  • 2019A New Approach to Modelling and Testing the Fatigue Strength of Helicopter Rotor Blades during Repair Processcitations

Places of action

Chart of shared publication
Boczkowska, Anna
1 / 87 shared
Latko-Durałek, Paulina
1 / 19 shared
Kozera, Rafał
1 / 22 shared
Dydek, Kamil
1 / 23 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Boczkowska, Anna
  • Latko-Durałek, Paulina
  • Kozera, Rafał
  • Dydek, Kamil
OrganizationsLocationPeople

article

A New Approach to Modelling and Testing the Fatigue Strength of Helicopter Rotor Blades during Repair Process

  • Sałaciński, Michał
Abstract

<jats:title>Abstract</jats:title><jats:p>The fatigue test was carried out on an element of a rotor blade removed from the Mi-2 helicopter. The purpose of the test was to check the fatigue strength of the repaired rotor blade. Metal composite rotor blades have a metal spar in the form of a box and the trailing sections in the form of metallic honeycomb sandwich panels. The trailing sections are bonded to the spar. The repair had been carried out at the point where the trailing section became debonded from the spar at the Air Force Institute of Technology in Warsaw using a methodology developed for carrying out repairs of rotor blades’ damage. All types of the Mi family helicopters are equipped with metal composite rotors blades. Depending on MTOW (Maximum Take-Off Weight) and destination of helicopters, blades differ in dimensions, but their design solutions are practically the same. For this reason, the developed repair methodology can be used for all characteristic rotor blades structures for Mi helicopters. The fatigue test was performed at the Łukasiewicz - Institute of Aviation in Warsaw, using a hydraulically driven fatigue machine. The fatigue test was carried out by performing over 1.1 million load cycles. In repair places, upon completion of fatigue testing, no damage was found.</jats:p>

Topics
  • strength
  • fatigue
  • composite
  • fatigue testing