Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Belachia, Mouloud

  • Google
  • 3
  • 5
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Effect of Strapping Straps Waste Fibers on Fresh and Hardened Properties of Concretecitations
  • 2020Estimation of the Adherence of Mortars Using Ultrasound1citations
  • 2019Effect of Cockele Shells on Mortars Performance in Extreme Conditionscitations

Places of action

Chart of shared publication
Kebout, Rachid
1 / 1 shared
Djebien, Rachid
1 / 6 shared
Abdelouahed, Assia
1 / 2 shared
Kherraf, Leila
1 / 1 shared
Hebhoub, Houria
1 / 4 shared
Chart of publication period
2024
2020
2019

Co-Authors (by relevance)

  • Kebout, Rachid
  • Djebien, Rachid
  • Abdelouahed, Assia
  • Kherraf, Leila
  • Hebhoub, Houria
OrganizationsLocationPeople

article

Estimation of the Adherence of Mortars Using Ultrasound

  • Belachia, Mouloud
Abstract

<jats:title>Abstract</jats:title><jats:p>Mortars are subjected to severe external stresses such as freezing, thawing, and drying during their lifetime. These stresses can lead to a loss of adhesion between the support and the mortar. The strength of the substrates with respect to their ability to receive a coating (mortar) is characterized in particular by the value of minimum tear resistance of the surface to be coated. In this work, the use of a non-destructive method which is both fast and easy to implement is employed to evaluate this support-mortar adhesion. The first method is based on the measurement of the velocities of the surface ultrasonic waves and the second by tearing tests using a specific dynamometer. The determination of the adhesion strength concerned two different supports (concrete beam and masonry block) coated with two types of mortar (a prepared cement mortar and a ready-to-use mortar) with two different thicknesses for each mortar (1 and 2 cm, respectively). The results of the two methods are then correlated for an estimation of the adhesion of the mortars.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • strength
  • cement
  • ultrasonic
  • drying