Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Biernacki, Krzysztof

  • Google
  • 2
  • 8
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Tribological properties of thermoplastic elastomer used in 3D printing technology2citations
  • 2013Effect of Bi203 excess on morphology and structure of BiNb04 ceramics1citations

Places of action

Chart of shared publication
Aldabergenova, Tamara
1 / 1 shared
Wieleba, Wojciech
1 / 4 shared
Leśniewski, Tadeusz
1 / 4 shared
Opałka, Mariusz
1 / 1 shared
Krawczyk, Justyna
1 / 1 shared
Lisińska Czekaj, A.
1 / 1 shared
Osiñska, K.
1 / 1 shared
Czekaj, D.
1 / 4 shared
Chart of publication period
2024
2013

Co-Authors (by relevance)

  • Aldabergenova, Tamara
  • Wieleba, Wojciech
  • Leśniewski, Tadeusz
  • Opałka, Mariusz
  • Krawczyk, Justyna
  • Lisińska Czekaj, A.
  • Osiñska, K.
  • Czekaj, D.
OrganizationsLocationPeople

article

Effect of Bi203 excess on morphology and structure of BiNb04 ceramics

  • Lisińska Czekaj, A.
  • Osiñska, K.
  • Czekaj, D.
  • Biernacki, Krzysztof
Abstract

Goal of the present research was to fabricate BiNbO4 ceramics from the mixture of powders by the solid state reaction route and pressureless sintering at various temperatures (Ts =870°C and Ts =910°C) and study microstructure, phase composition and crystalline structure of BiNbO4 ceramics. Four batches were fabricated and examined, namely the one fabricated from the stoichiometric mixture of reagent - grade oxide powders, viz. Bi203 and Nb20 5 as well as the ones with an excess of 3%, 5% and 10% by mole of Bi2O3. It was found that apart from the main orthorhombic a-BiNb04 phase additional phases, namely tetragonal Bi 5Nb3015, and cubic Bi3NbO 7 are possible to form from the mixture of bismuth oxide and niobium oxide. It was found that α-BiNbO4 ceramics exhibited the orthorhombic symmetry identified as Pnna (52). However, small differences in elementary cell parameters were found for the samples sintered from stoichiometric and non-stoichiometric mixture of initial powders.

Topics
  • microstructure
  • morphology
  • phase
  • ceramic
  • sintering
  • niobium
  • Bismuth