People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Muszka, Krzysztof
AGH University of Krakow
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Microstructural analysis of titanium alloys based on high-temperature phase reconstructioncitations
- 2024Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faultscitations
- 2022Effect of Mo on Phase Stability and Properties in FeMnNiCo High-Entropy Alloyscitations
- 2021The analysis of flow behavior of Ti-6Al-2Sn-4Zr-6Mo alloy based on the processing mapscitations
- 2020Study of the effect of Accumulative Angular Drawing deformation route on grain refinement in 304L stainless steel
- 2015Numerical analysis of highly reactive interfaces in processing of nanocrystallised multilayered metallic materials by using duplex techniquecitations
- 2013Effect of Austenite Morphology on Ferrite Refinement in Microalloyed Steelcitations
- 2013Strain-Induced Austenitic Structure in Microalloyed Steelscitations
- 2013Study of the Effect of Thermomechanical Processing on Grain Refinement in HSLA Steelscitations
Places of action
Organizations | Location | People |
---|
article
Strain-Induced Austenitic Structure in Microalloyed Steels
Abstract
<jats:title>Abstract</jats:title><jats:p> Austenite morphology is one of the main factors determining austenite-ferrite transformation kinetic and effectively affects the final microstructure and properties. The basic criteria for proper assessment of the austenite transformation products, theirs refinement, is the relation between the nucleation to growth rates. The main factor accelerating both, the nucleation rate of austenite during heating, and ferrite during cooling is the presence of accumulated deformation energy. The primary aim of this work is to increase our knowledge of the effects of deformation - its accumulated energy on the austenite structure and properties. Two specific steel grades were selected for the present investigation, i.e. microalloyed and IF steel, essentially different in equilibrium transformation temperatures. Obtained austenitic microstructures were analyzed, first of all as a start point for the austenite-to-ferrite transformation. Specific case of this transformation was considered i.e. Strain Induced Dynamic Transformation SIDT. The characteristic feature of the SIDT is the strong dependence of theirs kinetic on the austenite morphology, especially grain size. Thermomechanical processing, that utilize the SIDT, is one of the most effective ways to produce ultrafine-grained steel. One of the main benefits of the austenite refinement, just before the γ→α transformation, is its significant effect on the microstructure evolution during subsequent thermomechanical processing. Experimental results clearly show how direct and positive influence the austenite grain refinement has on the composition and refinement of transformation products. Presented study was focused on Strain Induced Dynamic Reverse Transformation. It is proved that this kind of transformation is very efficient way to intensify thermomechanical processing of microalloyed steels. Dynamic transformation kinetics were analyzed based upon flow curves recorded during the SIDT process. The main effect of presented research is analyze of influence of prior microstructure on dynamically formed austenite morphology </jats:p>