People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skiba, Jacek
Institute of High Pressure Physics
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Effect of microstructure refinement of pure copper on improving the performance of electrodes in electro discharge machining (EDM)citations
- 2023Suppression of mechanical instability in bioabsorbable ultrafine-grained Zn through in-situ stabilization by ZnO nanodispersoidscitations
- 2022The impact of severe plastic deformations obtained by hydrostatic extrusion on the machinability of ultrafine-grained Ti grade 2 intended for fastenerscitations
- 2022Influence of Strain Rates during Severe Plastic Strain Processes on Microstructural and Mechanical Evolution in Pure Zinccitations
- 2021Mechanical Reinforcement of Polyamide 6 by Cold Hydrostatic Extrusioncitations
- 2021Microstructural Investigation of a Friction-Welded 316L Stainless Steel with Ultrafine-Grained Structure Obtained by Hydrostatic Extrusioncitations
- 2019Anisotropy of mechanical and structural properties in AA 6060 aluminum alloy following hydrostatic extrusion processcitations
- 2018Effect of Severe Plastic Deformation Realized by Hydrostatic Extrusion on Heat Transfer in CP Ti Grade 2 and 316L Austenitic Stainless Steelcitations
- 2015Influence of Severe Plastic Deformation Induced by HE and ECAP on the Thermo-Physical Properties of Metalscitations
Places of action
Organizations | Location | People |
---|
article
Anisotropy of mechanical and structural properties in AA 6060 aluminum alloy following hydrostatic extrusion process
Abstract
The study attempts to investigate the influence of severe plastic deformation (SPD in the hydrostatic extrusion (HE) process on the anisotropy of the structure and mechanical properties of the AA 6060 alloy. Material in isotropic condition was subjected to a single round of hydrostatic extrusion with three different degrees of deformation (ε = 1.23, 1.57, 2.28). They allowed the grain size to be fragmented to the nanocrystalline level. Mechanical properties of the AA 6060 alloy, examined on mini-samples, showed an increase in ultimate tensile strength (UTS) and yield strength (YS) as compared to the initial material. Significant strengthening of the material results from high grain refinement in transverse section, from ~220 μm in the initial material to ~300 nm following the HE process. The material was characterized by the occurrence of structure anisotropy, which may determine the potential use of the material. Static tensile tests of mini-samples showed ~10% anisotropy of properties between longitudinal and transverse cross-sections. In the AA6060 alloy, impact anisotropy was found depending on the direction of its testing. Higher impact toughness was observed in the cross-section parallel to the HE direction. The results obtained allow to analyze the characteristic structure created during the HE process and result in more efficient use of the AA 6060 alloy in applications.