Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dhinakaran, V.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2024Hot Corrosion Studies on HVOF Coated Alloy A-286 in Molten Salt Environmentcitations

Places of action

Chart of shared publication
Kumar, P. Suresh
1 / 2 shared
Arivarasu, M.
1 / 3 shared
Vignesh, M.
1 / 1 shared
Jithesh, K.
1 / 1 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Kumar, P. Suresh
  • Arivarasu, M.
  • Vignesh, M.
  • Jithesh, K.
OrganizationsLocationPeople

article

Hot Corrosion Studies on HVOF Coated Alloy A-286 in Molten Salt Environment

  • Kumar, P. Suresh
  • Arivarasu, M.
  • Dhinakaran, V.
  • Vignesh, M.
  • Jithesh, K.
Abstract

<jats:p>The corrosion resistance Cr3C2-25%NiCr and Ni-20%Cr coatings were deposited on the alloy A-286 by high-velocity oxy-fuel (HVOF) coating, and the high-temperature corrosion features were evaluated at 700 and 850°C in Na2SO4-5%NaCl-7.5%NaVO3 atmosphere. Deposited coatings are dense and well-adherent to the substrate. A scanning electron microscope (SEM) is used to analyze the structure of the corroded samples. Results showed that Cr3C2 -25%NiCr coating provides better resistance to corrosion at 700°C, which is attributed to the protective Cr2O3 development. The coated metal was exposed at 850°C, and a higher corrosion rate was observed compared to 700°C, indicating that the temperature influenced the oxidation rate. The coating failure (crack) was noticed on the Cr3C2-25%NiCr coated surface when exposed at 850°C, and no damages are in the Ni-20%Cr coating.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • corrosion
  • scanning electron microscopy
  • crack