People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Piotrkiewicz, Paulina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Study of the impact of metallic components Cu, Ni, Cr, and Mo on the microstructure of Al2O3–Cu–Me compositescitations
- 2023Microstructure and Mechanical Characterization of Novel Al2O3–(NiAl–Al2O3) Composites Fabricated via Pulse Plasma Sinteringcitations
- 2021Zirconia–Alumina Composites Obtained by Centrifugal Slip Casting as Attractive Sustainable Material for Application in Constructioncitations
- 2021Characterization of Al2O3 Samples and NiAl–Al2O3 Composite Consolidated by Pulse Plasma Sinteringcitations
- 2021Environmental footprint as a criterion in the ZTA composites forming process via centrifugal slip castingcitations
- 2021Sintering Behavior, Thermal Expansion, and Environmental Impacts Accompanying Materials of the Al2O3/ZrO2 System Fabricated via Slip Castingcitations
- 2021Characterization of the alumina oxide, copper and nickel powders and their processing intended for fabrication of the novel hybrid composite: A comparative studycitations
- 2021Investigation on microstructure and selected properties of aluminum oxide–copper–nickel ceramic–metal compositescitations
- 2021Al2O3/ZrO2 Materials as an Environmentally Friendly Solution for Linear Infrastructure Applicationscitations
- 2021Investigation of microstructure and selected properties of Al2O3-Cu and Al2O3-Cu-Mo compositescitations
- 2021Novel Functionally Gradient Composites Al2O3-Cu-Mo Obtained via Centrifugal Slip Castingcitations
- 2020Effect of the powder consolidation method type on the microstructure and selected properties of Al2O3-Cu-Ni compositescitations
- 2020Microstructure and mechanical properties of Al2O3-Cu-Ni hybrid composites fabricated by slip castingcitations
- 2020Effect of the sintering temperature on microstructure and properties of Al2O3–Cu–Ni hybrid composites obtained by PPScitations
- 2020The influence of metal phase composition on microstructure and mechanical properties of Al2O3-Cu-Cr ceramic metal compositescitations
- 2019Investigation on fabrication and property of graded composites obtained via centrifugal casting in the magnetic fieldcitations
- 2019A possibility to obtain Al2O3-Cu-Ni composites via slip casting method
- 2019Al2O3-Cu-Mo hybrid composites: fabrication, microstructure, properties
Places of action
Organizations | Location | People |
---|
article
Effect of the powder consolidation method type on the microstructure and selected properties of Al2O3-Cu-Ni composites
Abstract
The present research is focused on the characterization of the composites from Al2O3-Cu-Ni system. Two methods of ceramic-metal composite forming were applied: uniaxial powder pressing and Pulse Plasma Sintering (PPS). To obtain the samples the powder mixtures containing 85 vol.% of Al2O3 and 15 vol.% of metal powders were used. Influence of the sintering process on microstructure and mechanical properties of the two series of the composites was analyzed in detail. The selected physical properties of samples were characterized by Archimedes immersion method. Vickers hardness and the fracture toughness of the composites was determined as well. The microstructure of the composites was characterized by XRD, SEM, EDX. Fractography investigation was carried out as well. Independently on composite production method Al2O3, Cu, Ni, and CuNi phases were revealed. Fractography investigation results revealed different character of fracture in dependence of fabrication method. Pulse Plasma Sintered samples were characterized by higher crack resistance and higher Vickers hardness in comparison to the specimens manufactured by uniaxial pressing.