Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cesar, E.

  • Google
  • 1
  • 6
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019The evolution of microstructure and magneto-structural properties of heat treated ni-mn-sn-in heusler alloys sintered by vacuum hot pressingcitations

Places of action

Chart of shared publication
Dutkiewicz, Jan
1 / 6 shared
Wójcik, Anna
1 / 9 shared
Maziarz, Wojciech
1 / 18 shared
Kowalczyk, Maciej
1 / 30 shared
Chulist, Robert
1 / 23 shared
Szczerba, Maciej
1 / 5 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Dutkiewicz, Jan
  • Wójcik, Anna
  • Maziarz, Wojciech
  • Kowalczyk, Maciej
  • Chulist, Robert
  • Szczerba, Maciej
OrganizationsLocationPeople

article

The evolution of microstructure and magneto-structural properties of heat treated ni-mn-sn-in heusler alloys sintered by vacuum hot pressing

  • Dutkiewicz, Jan
  • Cesar, E.
  • Wójcik, Anna
  • Maziarz, Wojciech
  • Kowalczyk, Maciej
  • Chulist, Robert
  • Szczerba, Maciej
Abstract

In this work, vacuum hot pressed Ni-Mn-Sn-In Heusler alloys with different concentration of In (0, 2 and 4 at.%), were investigated. The magneto-structural behaviour and microstructure dependencies on chemical composition and on heat treatment were examined. It was found that the martensite start transformation temperature increases with growing In content and to a lesser extent with increasing temperature of heat treatment. The high energy X-ray synchrotron radiation results, demonstrated that both chemical composition as well as temperature of heat treatment slightly modified the crystal structures of the studied alloys. Microstructural investigation performed by transmission electron microscopy confirmed chemical composition and crystal structure changes in the alloys. © 2019 Polish Academy of Sciences. All rights reserved.

Topics
  • microstructure
  • chemical composition
  • transmission electron microscopy
  • hot pressing