Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kolar, Johann W.

  • Google
  • 1
  • 2
  • 47

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 201799% Efficient three-phase buck-type SiC MOSFET PFC rectifier minimizing life cycle cost in DC data centers47citations

Places of action

Chart of shared publication
Schrittwieser, Lukas
1 / 1 shared
Soeiro, Thiago Batista
1 / 2 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Schrittwieser, Lukas
  • Soeiro, Thiago Batista
OrganizationsLocationPeople

article

99% Efficient three-phase buck-type SiC MOSFET PFC rectifier minimizing life cycle cost in DC data centers

  • Schrittwieser, Lukas
  • Kolar, Johann W.
  • Soeiro, Thiago Batista
Abstract

Due to the increasing power consumption of data centers, efficient dc power distribution systems have become an important topic in research and industry over the last years and according standards have been adopted. Furthermore the power consumed by telecommunication equipment and data centers is an economic factor for the equipment operator, which implies that all parts of the distribution system should be designed to minimize the life cycle cost, i.e. the sum of first cost and the cost of the power conversion losses. This paper demonstrates how semiconductor technology, chip area, magnetic component volumes and switching frequency can be selected based on life cycle cost, using analytical and numerical optimizations. A three-phase buck-type PFC rectifier with integrated active filter for 380V dc distribution systems is used as an example system, which shows that a peak efficiency of 99% is technically and economically feasible with state-of-the-art SiC MOSFETs and nanocrystalline or ferrite cores. Measurements taken on an 8 kW, 4 kWdm-3 hardware prototype demonstrate the validity and feasibility of the design.

Topics
  • impedance spectroscopy
  • phase
  • semiconductor