Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hirst, P.

  • Google
  • 5
  • 4
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2018Suitability of Anthill Soil as a Supplementary Cementitious Material4citations
  • 2017Performance of Class F Pulverised Fuel Ash and Ground Granulated Blast Furnace Slag in Ternary Concrete Mixes1citations
  • 2017Permeability of Corncob Ash, Anthill soils and Rice husk replaced concretecitations
  • 2017Influence of Rice Husk Ash Density on the workability and strength of structural concrete11citations
  • 2016Suitability of Corncob Ash as a supplementary Cementitious Materialcitations

Places of action

Chart of shared publication
Kamau, J.
5 / 5 shared
Kangwa, Joseph
5 / 5 shared
Ahmed, A.
5 / 16 shared
Hyndman, F.
1 / 1 shared
Chart of publication period
2018
2017
2016

Co-Authors (by relevance)

  • Kamau, J.
  • Kangwa, Joseph
  • Ahmed, A.
  • Hyndman, F.
OrganizationsLocationPeople

article

Influence of Rice Husk Ash Density on the workability and strength of structural concrete

  • Kamau, J.
  • Hirst, P.
  • Kangwa, Joseph
  • Ahmed, A.
  • Hyndman, F.
Abstract

Supplementary cementitious materials (SCMs) have been known to improve the properties of fresh and hardened concrete, and at the same time enhance the sustainability of concrete. Rice husk Ash (RHA), is one such material, but has neither been widely studied nor applied in practice. This work investigated the effect of the density of RHA on the workability and compressive strength of fresh and hardened RHA-replaced concrete respectively. Cement was replaced with RHA in concrete by weight (RHA-W) and by volume (RHA-V) at steps of 0%, 5%, 7.5%, 10%, 15%, 20%, 25% and 30%. The 0% replacement was used as the reference point from which performances were measured. Results showed that unlike the characteristic of other established pozzolans, RHA significantly reduced the workability of wet concrete and the rate of compressive strength gain over curing time due to a high water demand that is caused by the increased volume of replaced concrete, which results from its low density. Workability reduced with increased replacement for both RHA-W and RHA-V. Replacements of above 15% were not possible for the RHA-W due to the high water demand. However, replacements of up to 30% were achieved for the RHA-V. RHA-W specimens achieved lower compressive strengths and were observed to gain strength at a lower rate over the 28 to 91-days period of curing compared to RHA-V specimens. This behavior was attributed to the shortage of water that is necessary for the hydration of cement and subsequent pozzolanic reaction, which is the basis of the contribution that is made to the strength and performance of concrete by SCMs. However, the compressive strengths achieved were above the study’s target concrete strength of class C32/40 at 91 days, which is among those classes that are listed as being durable and suitable for structural applications. A conclusion that RHA should supplement cements by volumetric replacement rather than simple substitution by weight was drawn.

Topics
  • density
  • impedance spectroscopy
  • strength
  • cement
  • curing