Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, Ravi Prakash

  • Google
  • 1
  • 2
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Experimental Study of Hydroformed Al6061T4 Elliptical Tube Samples under Different Internal Pressures1citations

Places of action

Chart of shared publication
Meraz, Md.
1 / 1 shared
Kumar, Santosh
1 / 33 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Meraz, Md.
  • Kumar, Santosh
OrganizationsLocationPeople

article

Experimental Study of Hydroformed Al6061T4 Elliptical Tube Samples under Different Internal Pressures

  • Meraz, Md.
  • Singh, Ravi Prakash
  • Kumar, Santosh
Abstract

<jats:p>In order to achieve crack free elliptical shape under controlled conditions, an experimental set-up was designed and fabricated. This setup consists of three hydraulic cylinders, an intensifier, a hydraulic power pack, storage tanks, forming die, and all parts are controlled by a Programmable Logic Controller (PLC) system. The elliptical samples can be achieved through proper control of internal pressure and axial force with proper sealing. Experimental work has been carried out with different magnitudes of internal pressure and constrained conditions of axial force. Initially die of elliptical shape has been designed and modeled in Abaqus to successfully achieve the particular shape of the Al6061T4 tube under different internal pressure. The fabricated tube hydroforming machine set-up is highly effective for forming 0.5 mm-2 mm thick Al6061T4 alloy tube samples. The Experimental test has been carried out at 12.7 mm outer diameter, 175 mm length and 0.5 mm thick Al6061T4 samples. Bulge height parameters measured at different points of regular distance gap on the axial direction of the tube length and corner radius found at different pressures range of the samples are plotted under different internal pressures. Samples having an 18.7 mm major elliptical bulge were achieved during the experiment. The experimental data was validated by simulation results.</jats:p>

Topics
  • impedance spectroscopy
  • experiment
  • simulation
  • crack
  • forming