Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Romanova, Anna

  • Google
  • 2
  • 5
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2018Detection of Titanium Particles in Soft Tissues Adjacent to the Fixators in Patients with Facial Fractures and Bone Defects4citations
  • 2014Advanced numerical and analytical methods for assessing concrete sewers and their remaining service lifecitations

Places of action

Chart of shared publication
Mykhailenko, Oleksandr
1 / 1 shared
Kopchak, Andrii
1 / 1 shared
Faramarzi, Asaad
1 / 5 shared
Mahmoodian, Mojtaba
1 / 2 shared
Alani, Amir
1 / 5 shared
Chart of publication period
2018
2014

Co-Authors (by relevance)

  • Mykhailenko, Oleksandr
  • Kopchak, Andrii
  • Faramarzi, Asaad
  • Mahmoodian, Mojtaba
  • Alani, Amir
OrganizationsLocationPeople

article

Detection of Titanium Particles in Soft Tissues Adjacent to the Fixators in Patients with Facial Fractures and Bone Defects

  • Mykhailenko, Oleksandr
  • Romanova, Anna
  • Kopchak, Andrii
Abstract

<jats:p>Background: Open reposition and rigid internal fixation are the main methods of treatment for traumatic injuries of the facial skull and an important stage of bone-plastic, reconstructive, and orthognathic surgery. In contemporary maxillofacial surgery, fixators, implants, and endoprostheses made of titanium or its alloys are widely used due to the high corrosion resistance and biocompatibility. However, recent studies have shown that none of the metal implants used in maxillofacial surgery, orthopedics or traumatology is completely inert. Moreover, they always interact with the surrounding biological environment. Thus, a number of studies have revealed the release of titanium to the adjacent soft tissues. Material and Methods: Titanium fixators (plates and screws) removed in 12 patients in late terms after osteosynthesis, as well as biopsies of the periosteum and fibrous capsule adjacent to the fixation elements made of titanium were investigated. Microscopic fluorescence spectroscopic analysis (M4 TORNADO micro-ray fluorescence spectrometer; Bruker, Bremen, Germany) was used to determine the elemental composition of the removed soft tissue fragments. Scanning electron microscopy (microscope model JSM-6060; JEOL, Japan) was used to study structural changes on the surface of titanium plates and screws. The obtained results were analized with the use of Spirman correlation coefficient, calculated by the IBM SPSS Statistics v.23 software.Results: X-ray fluorescence analysis revealed the inclusion of titanium in all investigated samples with an average content of titanium 48.14% ± 31.1% in metal deposition areas. For samples removed in patients with traumatic facial fractures after metallosteosynthesis, the average content of titanium was 55.6%, and for reconstructive surgeries – 37.72%. The acquired maps of the element deposition showed no topographic inhomogenity of titanium particles distribution. The main distribution patterns were the following: 1) areas of clearly outlined intensive titanium inclusions (90.9-800 μm), and 2) diffuse titanium inclusions which were poorly demarcated. Electronic microscopy of the investigated fixators revealed deformation of the thread, bending of screws, deformation and surface defects of the plates caused by mechanical damage, including microcracks, sharp edges, scratches, dimples.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • polymer
  • corrosion
  • inclusion
  • scanning electron microscopy
  • titanium
  • biocompatibility