People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Skierucha, W.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2021Application of a dagger probe for soil dielectric permittivity measurement by TDRcitations
- 2020Application of a Monopole Antenna Probe with an Optimized Flange Diameter for TDR Soil Moisture Measurementcitations
- 2020Time domain transmission sensor for soil moisture profile probe, selected technical aspects citations
- 2020Evaluation of a Multi-Rod Probe Performance for Accurate Measurements of Soil Water Contentcitations
- 2020Dielectric Properties of Glass Beads with Talc as a Reference Material for Calibration and Verification of Dielectric Methods and Devices for Measuring Soil Moisturecitations
- 2020Wideband Characterization of Soil Complex Dielectric Permittivity Spectrum
- 2019Impact of soil salinity, texture and measurement frequency on the relations between soil moisture and 20 MHz–3 GHz dielectric permittivity spectrum for soils of medium texturecitations
- 2019An open-ended probe with an antenna for the measurement of the water content in the soilcitations
- 2019One-Port Vector Network Analyzer Characterization of Soil Dielectric Spectrumcitations
- 2019Verification of soil salinity index model based on 0.02–3 GHz complex dielectric permittivity spectrum measurementscitations
- 2019Seven-Rod Dielectric Sensor for Determination of Soil Moisture in Small Volumes
- 2019A Seven-Rod Dielectric Sensor for Determination of Soil Moisture in Well-Defined Sample Volumescitations
- 2018The Calibration-Free Method for Determining Dielectric Permittivity Spectrum
- 2018Electromagnetic multi-simulation method for determining dielectric permittivity spectrum
- 2018Impact of soil salinity on the relation between soil moisture and dielectric permittivitycitations
- 2018The Effect of Storage Time on Dielectric Properties of Pasteurized Milks and Yoghurtcitations
- 2017Soil salinity characterization based on 0.05-3 GHz dielectric permittivity measurementscitations
- 2017Wideband extraction of soil dielectric spectrum from vector-network-analyzer measurementscitations
- 20170.05–3 GHz VNA characterization of soil dielectric properties based on the multiline TRL calibrationcitations
Places of action
Organizations | Location | People |
---|
booksection
Evaluation of a Multi-Rod Probe Performance for Accurate Measurements of Soil Water Content
Abstract
Dielectric sensors operating in time and frequency domain can be used to determine soil moisture content. There isstill a need for developing new sensors for determination of soil water content, in order to further improve measurementaccuracy, lower the price or adapt the equipment for specialapplications. For example, many of the existing soil moisture probes do not allow accurate measurement of dielectric properties in a small volume because of their construction. The paper presents the evaluation of a seven-rod probe for an accurate determination of soil water content in a small sample volume. Firstly, digital simulations for sensitivity zone of the tested probe were performed. Next, the prototype probe was tested for two soils with various texture and moisture content inthe range from air dry to near saturation. The values ofdielectric permittivity (frequency domain) and apparentdielectric permittivity (time domain) were calculated from the measured S11 parameters. The obtained data was comparedwith the reference Topp’s equation. It was concluded that the tested probe is able to measure soil moisture in a small volume(about 8 cm3) in the range of frequencies from 20 MHz to 200 MHz.