People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jacobsen, Rasmus Elkjær
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023Reconfigurable Water-Based Antennascitations
- 2021Water-based devices for advanced control of electromagnetic wavescitations
- 2021Water – A Microwave Material for Advanced Wave Control and Sensing
- 2020Mie Resonances in Water Spheres for Microwave Metamaterials and Antennas
- 2020Mie Resonances in Water Spheres for Microwave Metamaterials and Antennas
- 2020Continuous Heating Microwave System Based on Mie Resonancescitations
- 2020Continuous Heating Microwave System Based on Mie Resonancescitations
- 2019Mie Resonance-Based Continuous Heating Microwave Systems
- 2019Mie Resonance-Based Continuous Heating Microwave Systems
- 2019Fundamental Properties of Mie Resonances in Water Spherescitations
- 2019Fundamental Properties of Mie Resonances in Water Spherescitations
- 2019Fundamental Properties of Mie Resonances in Water Cylinders – TM and TE Case Studies
- 2019Fundamental Properties of Mie Resonances in Water Cylinders – TM and TE Case Studies
- 2018Effective Switching of Microwaves by Simple Water-Based Metasurfaces
- 2018Effective Switching of Microwaves by Simple Water-Based Metasurfaces
Places of action
Organizations | Location | People |
---|
document
Fundamental Properties of Mie Resonances in Water Cylinders – TM and TE Case Studies
Abstract
All-dielectric metamaterials have recently attracted great attention in the artificial material design. They consist of high permittivity inclusions which enable resonances in sub-wavelength structures. In contrast to optics, several high permittivity materials exist in the microwave range. Among these we find one of the most abundant materials on earth: water. In its liquid state, it offers great tunable dynamic properties that can be used in material design. To this end, we presently examine analytically the so-called Mie resonances in water cylinders. Particular attention is devoted to the ability of such cylinders to support electric and magnetic dipole modes, and how these behave with temperature and frequency. Subsequently, we demonstrate that directive forward and backward patterns can be achieved by specific water cylinders with balanced electric and magnetic dipole responses. The results of this work may be used directly in or as a guideline for metamaterial design as well as for simple, cheap and rather directive antennas.