Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Booth, Paul

  • Google
  • 2
  • 10
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022A Narrowband 3-D Printed Invar Spherical Dual-Mode Filter With High Thermal Stability for OMUXs16citations
  • 2022Thermal stability analysis of 3D printed resonators using novel materials5citations

Places of action

Chart of shared publication
Skaik, Talal
2 / 12 shared
Pambaguian, Laurent
2 / 10 shared
Wang, Yi
2 / 27 shared
Mohamed, Abd El-Moez
1 / 4 shared
Mart, Petronilo
1 / 1 shared
Attallah, Moataz Moataz
2 / 96 shared
Espana, Cesar Miquel
2 / 2 shared
Li, Sheng
2 / 12 shared
Qian, Lu
2 / 7 shared
Martin-Iglesias, Petronilo
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Skaik, Talal
  • Pambaguian, Laurent
  • Wang, Yi
  • Mohamed, Abd El-Moez
  • Mart, Petronilo
  • Attallah, Moataz Moataz
  • Espana, Cesar Miquel
  • Li, Sheng
  • Qian, Lu
  • Martin-Iglesias, Petronilo
OrganizationsLocationPeople

document

Thermal stability analysis of 3D printed resonators using novel materials

  • Skaik, Talal
  • Booth, Paul
  • Pambaguian, Laurent
  • Wang, Yi
  • Martin-Iglesias, Petronilo
  • Attallah, Moataz Moataz
  • Espana, Cesar Miquel
  • Li, Sheng
  • Qian, Lu
Abstract

<p>This paper presents an investigation into the thermal stability of microwave cavity resonators using several novel alloy materials. Shaped spherical resonators are additively manufactured by Selective Laser Melting (SLM) technology from alloy powders. The manufacturing parameters of each sample is presented, and their thermal stability is experimentally characterized by measuring the RF performance under different temperatures. The Ti64, Zr702 and TNTZ samples show much improved thermal stability as compared with the common aluminium alloy used for space application. A detailed comparison between different samples in terms of their mechanical, thermal and RF performance is presented. This work introduces an expanded range of materials that may be used for microwave filters and opens opportunity for new temperature compensation techniques for high power filters.</p>

Topics
  • impedance spectroscopy
  • aluminium
  • aluminium alloy
  • selective laser melting