People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salek, Milan
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023High-Q 100 ghz photonic crystal resonator fabricated from a cyclic olefin copolymercitations
- 2023Compact Monolithic 3D-Printed Wideband Filters Using Pole-Generating Resonant Irisescitations
- 2023Evaluation of 3D printed monolithic G-band waveguide componentscitations
- 2022A 3D printed 300 GHz waveguide cavity filter by micro laser sinteringcitations
- 2022Compact monolithic SLM 3D-printed filters using pole-generating resonant irisescitations
- 2021Two‐GHz hybrid coaxial bandpass filter fabricated by stereolithography 3‐D printing
- 2020180 GHz Waveguide Bandpass Filter Fabricated by 3D Printing Technologycitations
- 201990 GHz Micro Laser Sintered Filter: Reproducibility and Quality Assessmentcitations
- 20193-D Printed microwave and terahertz passive components
- 2018W-Band Waveguide Bandpass Filters Fabricated by Micro Laser Sinteringcitations
Places of action
Organizations | Location | People |
---|
document
Compact monolithic SLM 3D-printed filters using pole-generating resonant irises
Abstract
<p>This paper proposes a new pole-generating resonant iris structure for the design of iris-coupled cavity filters. By replacing the conventional reactive iris with a resonant iris, extra transmission pole can be generated without increasing the number of resonant cavities. This leads to several design advantages: (i) a more compact filter structure; and (ii) ability to realize wide bandwidth and to improve out-of-band rejection. To demonstrate these, a third-order Chebyshev filter is designed and implemented, occupying the same footprint as a second-order filter. To facilitate the formation of the intricate resonant iris structures, the filter was printed monolithically using selective laser melting (SLM) technique. Very good agreement between the measurements and simulations has been achieved.</p>