People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bossuyt, Frederick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Methods to improve accuracy of electronic component positioning in thermoformed electronicscitations
- 2022Innovative component positioning method for thermoformed electronicscitations
- 2022A study on over-molded copper-based flexible electronic circuitscitations
- 2020Flexible microsystems using over-molding technologycitations
- 2020Solar cells integration in over-molded printed electronicscitations
- 2019Effect of overmolding process on the integrity of electronic circuitscitations
- 2017Arbitrarily shaped 2.5D circuits using stretchable interconnects embedded in thermoplastic polymerscitations
- 2016One-time deformable thermoplastic devices based on flexible circuit board technologycitations
- 2015Deformable microsystem for in situ cure degree monitoring of GFRP(Glass Fibre Reinforced Plastic)
- 20152.5D smart objects using thermoplastic stretchable interconnectscitations
- 2015Free-form 2.5D thermoplastic circuits using one-time stretchable interconnections
- 2013Stretchable electronics technology for large area applications: fabrication and mechanical characterizationcitations
- 2011The effects of encapsulation on deformation behavior and failure mechanisms of stretchable interconnectscitations
Places of action
Organizations | Location | People |
---|
document
Effect of overmolding process on the integrity of electronic circuits
Abstract
Traditional injection molding processes have been widely used in the plastic processing industry. It is the major processing technique for converting thermoplastic polymers into complicated 3D parts with the aid of heat and pressure. Next generation of electronic circuits used in different application areas such as automotive, home appliances and medical devices will embed various electronic functionalities in plastic products. In this study, over-molding injection molding (OVM) of electronic components will be examined to insert novel performance in polymer materials. This low-cost manufacturing process offers potential benefits such as, reduction in processing time, higher freedom of design and less energy used when compared to the conventional injection molding method. This paper aims to evaluate the performance of this process and propose a series of alternative solutions to optimize the adhesion between and integration of electronics and engineering plastics. A number of methods are used to optimize the process so that the electronic circuits are not damaged during the over-molding, moreover to test the reliability of the system in order to control the continuity of connections between the electronic circuit foils and the electronic components after the OVM process. Correspondingly, we have performed specific tests for this purpose varying in some conditions: the type of injected plastic used, over-molding parameters (temperature, pressure and injection time), electronic circuit design, type of assembled electronic components, type of foils used and the effect of using underfill material below the electronic component. From these tests, first conclusions were made. We have also studied adhesion between the foil and the over-molding material. In this case, various types of engineering plastics have been tested; polypropylene (PP), 30% weight percentage glass,fiber filled polypropylene (GF-PP), Polyamide-6 (PA6) and 50% weight percentage glass fiber filled polyamide-6 (GF-PA6). It was proved that throughout the wide range of tested materials, (PA6) over-molded samples showed a better adhesion on the copper-polyimide foils than the rest. These plastics were over-molded on two types of polyimide (PP/Copper (Cu) tracks foils with and without an adhesive layer between PI and Cu. It was obviously clear that the foils with on adhesive layer between PI and Cu had more delamination in the Cu tracks than the foils without an adhesive layer. Furthermore, it was shown that the presence of an underfill material has on effect on the system as the foils that had an underfill material below their components successfully had a better connection than the folis without an underfill material. Finally, experiments were executed using the two probe method as an electrical measurement and microscope investigation as the visual inspection.