Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Su, Yibo

  • Google
  • 3
  • 6
  • 58

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Flexible microsystems using over-molding technology7citations
  • 2019Effect of overmolding process on the integrity of electronic circuits7citations
  • 2017The effect of titanium surface treatment on the interfacial strength of titanium – Thermoplastic composite joints44citations

Places of action

Chart of shared publication
Vanfleteren, Jan
2 / 24 shared
Bossuyt, Frederick
2 / 13 shared
Bakr, Mona
2 / 4 shared
Grouve, Wouter J. B.
1 / 78 shared
Akkerman, Remko
1 / 423 shared
De Rooij, Matthijn
1 / 38 shared
Chart of publication period
2020
2019
2017

Co-Authors (by relevance)

  • Vanfleteren, Jan
  • Bossuyt, Frederick
  • Bakr, Mona
  • Grouve, Wouter J. B.
  • Akkerman, Remko
  • De Rooij, Matthijn
OrganizationsLocationPeople

document

Effect of overmolding process on the integrity of electronic circuits

  • Su, Yibo
  • Vanfleteren, Jan
  • Bossuyt, Frederick
  • Bakr, Mona
Abstract

Traditional injection molding processes have been widely used in the plastic processing industry. It is the major processing technique for converting thermoplastic polymers into complicated 3D parts with the aid of heat and pressure. Next generation of electronic circuits used in different application areas such as automotive, home appliances and medical devices will embed various electronic functionalities in plastic products. In this study, over-molding injection molding (OVM) of electronic components will be examined to insert novel performance in polymer materials. This low-cost manufacturing process offers potential benefits such as, reduction in processing time, higher freedom of design and less energy used when compared to the conventional injection molding method. This paper aims to evaluate the performance of this process and propose a series of alternative solutions to optimize the adhesion between and integration of electronics and engineering plastics. A number of methods are used to optimize the process so that the electronic circuits are not damaged during the over-molding, moreover to test the reliability of the system in order to control the continuity of connections between the electronic circuit foils and the electronic components after the OVM process. Correspondingly, we have performed specific tests for this purpose varying in some conditions: the type of injected plastic used, over-molding parameters (temperature, pressure and injection time), electronic circuit design, type of assembled electronic components, type of foils used and the effect of using underfill material below the electronic component. From these tests, first conclusions were made. We have also studied adhesion between the foil and the over-molding material. In this case, various types of engineering plastics have been tested; polypropylene (PP), 30% weight percentage glass,fiber filled polypropylene (GF-PP), Polyamide-6 (PA6) and 50% weight percentage glass fiber filled polyamide-6 (GF-PA6). It was proved that throughout the wide range of tested materials, (PA6) over-molded samples showed a better adhesion on the copper-polyimide foils than the rest. These plastics were over-molded on two types of polyimide (PP/Copper (Cu) tracks foils with and without an adhesive layer between PI and Cu. It was obviously clear that the foils with on adhesive layer between PI and Cu had more delamination in the Cu tracks than the foils without an adhesive layer. Furthermore, it was shown that the presence of an underfill material has on effect on the system as the foils that had an underfill material below their components successfully had a better connection than the folis without an underfill material. Finally, experiments were executed using the two probe method as an electrical measurement and microscope investigation as the visual inspection.

Topics
  • impedance spectroscopy
  • experiment
  • glass
  • glass
  • laser emission spectroscopy
  • copper
  • injection molding
  • thermoplastic