People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
You, Dali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024The simple microsegregation model for steel considering MnS formation in the liquid and solid phasescitations
- 2021Simulation of the Refining Process of Ultra-Low Carbon (ULC) Steelcitations
- 2021Influence of Slag Viscosity and Composition on the Inclusion Content in Steelcitations
- 2020Study on the Possible Error Due to Matrix Interaction in Automated SEM/EDS Analysis of Nonmetallic Inclusions in Steel by Thermodynamics, Kinetics and Electrolytic Extractioncitations
- 2017Modeling Inclusion Formation during Solidification of Steelcitations
Places of action
Organizations | Location | People |
---|
article
Influence of Slag Viscosity and Composition on the Inclusion Content in Steel
Abstract
Influence of slag viscosity and composition on the inclusion content in the steel is studied using laboratory experiments and modeling simulations. The steel samples are taken during the experimental process to record the inclusion content change. Afterwards the prepared samples are analyzed using automated scanning electron microscope and energy dispersive spectroscopy (SEM/EDS) method. A simple steel/slag reaction model is constructed based on the effective equilibrium reaction zone (EERZ) method. The inclusion content evolution process is discussed by combining the experimental and calculated results. It is found that the inclusion content evolution in the steel is determined by the inclusion generation and removal.