People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chen, Jiang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Integrated Experimental Phase Equilibria and Thermodynamic Modelling Research and Implementation in support of progress of process pyrometallurgy towards sustainability
- 2024Phase equilibria in the ZnO-MgO-SiO2 and PbO-ZnO-MgO-SiO2 systems for characterizing MgO-based refractory – slag interactionscitations
- 2023Experimental Study and Thermodynamic Modelling of Equilibrium Distributions of Ni, Sn and Zn Between Slag and Black Copper for E-Scrap Recycling Applicationscitations
- 2023Integrated Experimental Phase Equilibria and Thermodynamic Modelling Research and Implementation in Support of Sustainable Pyrometallurgical Processingcitations
- 2021Investigation of the thermodynamic stability of C(A, F)3 solid solution in the FeO-Fe2O3-CaO-Al2O3 System and SFCA Phase in the FeO-Fe2O3-CaO-SiO2-Al2O3 Systemcitations
- 2019A Phase Equilibrium of the Iron-rich Corner of the CaO–FeO–Fe2O3–SiO2 System in Air and the Determination of the SFC Primary Phase Fieldcitations
- 2019Experimental investigation and thermodynamic modeling of the distributions of Ag and Au between slag, matte, and metal in the Cu–Fe–O–S–Si systemcitations
- 2019Distributions of Ag, Bi, and Sb as minor elements between iron-silicate slag and copper in equilibrium with tridymite in the Cu-Fe-O-Si system at T = 1250 °C and 1300 °C (1523 K and 1573 K)citations
- 2019Combined experimental and thermodynamic modelling investigation of the distribution of antimony and tin between phases in the Cu-Fe-O-S-Si systemcitations
- 2019Factors influencing the microstructures of iron ore sinterscitations
- 2019Effect of Gas Atmosphere on the Phase Chemistry in the CaO-FeO-Fe2O3-SiO2 System Related to Iron Ore Sinter-makingcitations
- 2019Integrated experimental study and thermodynamic modelling of the distribution of arsenic between phases in the Cu-Fe-O-S-Si systemcitations
- 2017Experimental and modelling research in support of energy savings and improved productivity in non-ferrous metal production and recycling
- 2016Phase equilibria study of the CaO-“Fe2O3”-SiO2 system in air to support iron sintering process optimisationcitations
- 2015Experimental investigation and thermodynamic modeling of the (NiO + CaO + SiO2), (NiO + CaO + MgO) and (NiO + CaO + MgO + SiO2) systemscitations
- 2013Experimental study and thermodynamic modeling of the MgO–NiO–SiO2 systemcitations
- 2012Experimental study and thermodynamic optimization of the CaO-NiO, MgO-NiO and NiO-SiO2 systemscitations
- 2012Development of NiO-CaO-MgO-SiO2 thermodynamic database using experimental and thermodynamic modelling approaches with focus on NiO-MgO-SiO2 and NiO-CaO-SiO2 systems
Places of action
Organizations | Location | People |
---|
article
Effect of Gas Atmosphere on the Phase Chemistry in the CaO-FeO-Fe2O3-SiO2 System Related to Iron Ore Sinter-making
Abstract
Experimental phase equilibria studies have been carried out to investigate the phase chemistry in the CaO–“Fe2O3”–SiO2 system related to the iron ore sinter making in 1 atm CO2 at 1200–1230°C. The measurements have been performed using a modified experimental technique involving high temperature equilibration and rapid quenching followed by electron probe X-ray microanalysis (EPMA). In contrast to the equilibria in air, the experimental results show that no silico-ferrite of calcium (SFC solid solution) is formed in 1 atm CO2 within the temperature range investigated; that is, the SFC phase is not stable at liquidus temperatures. The liquidus for the iron-rich corner of the CaO–“Fe2O3”–SiO2 system in CO2 atmosphere for the spinel (magnetite Fe3O4) and dicalcium silicate (C2S = Ca2SiO4) primary phase fields has been proposed.