People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lu, Liming
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2021Characterisation of SFCA phases in iron ore sinter by combined optical microscopy and electron probe microanalysis (EPMA)
- 2021Positive Influence of WHIMS Concentrate on the Sintering Performance of Roy Hill Fines
- 2018Importance of textural information in mathematical modelling of iron ore fines sintering performancecitations
- 2015Automated optical image analysis of natural and sintered iron orecitations
- 2015Utilization of biomass as an alternative fuel in ironmakingcitations
- 2014Effect of sintering conditions on the formation of mineral phases during iron ore sintering with New Zealand ironsand
- 2014Current status and future direction of low-emission Integrated Steelmaking Processcitations
- 2013Substitution of charcoal for coke breeze in iron ore sinteringcitations
Places of action
Organizations | Location | People |
---|
article
Substitution of charcoal for coke breeze in iron ore sintering
Abstract
The substitution of charcoal as an alternative fuel to coke breeze in a simulated Japanese Steel Mills (JSM) sinter blend was investigated. Compared with coke breeze, higher mix moisture contents were required for the sinter mixture containing charcoal to achieve optimum granulation. The green granules formed from the sinter mixture containing charcoal were clearly less dense and formed a less compacted green bed as evidenced by the packing density. To achieve return fines balance, fuel addition had to be increased from 3.62 to 4.17% (on a dry mixture basis) as the substitution of charcoal increased from 0 to 50%. However, at 100% subsitution, the sinter mixture failed to achieve balance even at a very high fuel addition level of 4.7%. Compared with the sinter fired with coke breeze, the sinter from the mixtures containing up to 50% charcoal was marginally weaker in terms of sinter yield, tumble strength (TI) and reduction disintegration (RDI). The reasons for weaker sinter are discussed. Fuel rate increased considerably with charcoal substitution due to increased fuel addition and decreased sinter yield. However, increasing fuel rate did not lead to a reduction of sintering productivity. In contrast, the sintering speed and productivity were maintained as the charcoal substitution rate increased from 0 to 25% and then increased considerably with further increase in charcoal substitution rate. The emission mechanisms of the CO, CO2, SO2 and NOX and H2O gases during sintering are clearly quite different. CO, CO2 and NOx emission was observed over the entire sintering process and varied slightly as the sintering process progressed. However, the SO2 and H2O emissions were observed only towards the completion of the sintering process. Both the CO and CO2 concentrations in the waste gas increased with the increasing substitution of charcoal for coke breeze; however the concentrations of SO2 and NOX in the waste gas decreased.