Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wu, Zefeng

  • Google
  • 1
  • 3
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Melt pool dynamics on different substrate materials in high-speed laser directed energy deposition process2citations

Places of action

Chart of shared publication
Watts, Jarrod
1 / 1 shared
Hagenlocher, Christian
1 / 4 shared
Brandt, Milan
1 / 16 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Watts, Jarrod
  • Hagenlocher, Christian
  • Brandt, Milan
OrganizationsLocationPeople

article

Melt pool dynamics on different substrate materials in high-speed laser directed energy deposition process

  • Watts, Jarrod
  • Hagenlocher, Christian
  • Wu, Zefeng
  • Brandt, Milan
Abstract

<jats:p>High-speed laser directed energy deposition (HSL-DED) is a variant of the laser directed energy deposition process where a defocused metal powder stream is used, and it typically involves processing speeds exceeding 5 m/min. However, the interactions between the laser beam, powder stream, and substrate surface in HSL-DED have not been extensively studied. This study used a specialized XIRIS XVC-1000 welding camera with a narrow bandpass filter to record the interaction phenomenon. These observations were first carried out without powder delivery, using laser surface melting techniques, and involved processing speeds of up to 20 m/min and laser powers of up to 3 kW. HSL-DED with powder delivery was then conducted with the same parameter combinations for comparative analysis. The in situ observations in laser surface melting and HSL-DED identified a physical separation between the laser spot and the melt pool boundary, referred to as melt pool lag. Different substrates’ chemical compositions and the resulting thermophysical properties significantly impact melt pool dynamics during the high-speed laser-material interactions for a given process condition. The findings from this work have enabled a better understanding and control of melt pool dynamics in HSL-DED.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • melt
  • liquid-assisted grinding
  • chemical composition
  • directed energy deposition