People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brandt, Milan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Titanium Multi‐Topology Metamaterials with Exceptional Strengthcitations
- 2023In situ X-ray imaging of hot cracking and porosity during LPBF of Al-2139 with TiB2 additions and varied process parameters
- 2023Algorithmic detection and categorization of partially attached particles in AM structures: a non-destructive method for the certification of lattice implantscitations
- 2023Process monitoring and machine learning for defect detection in laser-based metal additive manufacturingcitations
- 2023The effect of geometric design and materials on section properties of additively manufactured lattice elementscitations
- 2023Melt pool dynamics on different substrate materials in high-speed laser directed energy deposition processcitations
- 2023A virtual stylus method for non-destructive roughness profile measurement of additive manufactured lattice structurescitations
- 2023Reducing the prosthesis modulus by inclusion of an open space lattice improves osteogenic response in a sheep model of extraarticular defectcitations
- 20203D-printed diamond-titanium composite: A hybrid material for implant engineeringcitations
- 2020On the role of wet abrasive centrifugal barrel finishing on surface enhancement and material removal rate of LPBF stainless steel 316Lcitations
- 2019Rational design of additively manufactured Ti6Al4V implants to control Staphylococcus aureus biofilm formationcitations
- 2019Cost-oriented planning of equipment for selective laser melting (SLM) in production linescitations
- 2019Selective laser melting of duplex stainless Steel 2205 : Effect of post-processing heat treatment on microstructure, mechanical properties, and corrosion resistancecitations
- 2015Fatigue life of laser clad hardfacing alloys on AISI 4130 steel under rotary bending fatigue testcitations
- 2012Thermal fatigue behavior of direct metal deposited H13 tool steel coating on copper alloy substratecitations
- 2012Copper based bi-metallic core pin using DMD: industrial evaluation
Places of action
Organizations | Location | People |
---|
article
Melt pool dynamics on different substrate materials in high-speed laser directed energy deposition process
Abstract
<jats:p>High-speed laser directed energy deposition (HSL-DED) is a variant of the laser directed energy deposition process where a defocused metal powder stream is used, and it typically involves processing speeds exceeding 5 m/min. However, the interactions between the laser beam, powder stream, and substrate surface in HSL-DED have not been extensively studied. This study used a specialized XIRIS XVC-1000 welding camera with a narrow bandpass filter to record the interaction phenomenon. These observations were first carried out without powder delivery, using laser surface melting techniques, and involved processing speeds of up to 20 m/min and laser powers of up to 3 kW. HSL-DED with powder delivery was then conducted with the same parameter combinations for comparative analysis. The in situ observations in laser surface melting and HSL-DED identified a physical separation between the laser spot and the melt pool boundary, referred to as melt pool lag. Different substrates’ chemical compositions and the resulting thermophysical properties significantly impact melt pool dynamics during the high-speed laser-material interactions for a given process condition. The findings from this work have enabled a better understanding and control of melt pool dynamics in HSL-DED.</jats:p>