People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hinderdael, Michaël
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Experimental evaluation of the metal powder particle flow on the melt pool during directed energy depositioncitations
- 2023Measuring and Predicting the Effects of Residual Stresses from Full-Field Data in Laser-Directed Energy Depositioncitations
- 2023Comparison and Analysis of Hyperspectral Temperature Data in Directed Energy Depositioncitations
- 2022Experimental identification of process dynamics for real-time control of directed energy depositioncitations
- 2022Powder-Gas Jet Velocity Characterization during Coaxial Directed Energy Deposition Processcitations
- 2021Structural health monitoring through surface acoustic wave inspection deployed on capillaries embedded in additively manufactured components
- 2021Process parameter study for enhancement of directed energy deposition powder efficiency based on single-track geometry evaluationcitations
- 2021Production Assessment of Hybrid Directed Energy Deposition Manufactured Sample with Integrated Effective Structural Health Monitoring channel (eSHM)citations
- 2020Offline powder-gas nozzle jet characterization for coaxial laser-based Directed Energy Depositioncitations
- 2019Hyperspectral and Thermal Temperature Estimation During Laser Claddingcitations
- 2019Analytical Modeling of Embedded Load Sensing Using Liquid-Filled Capillaries Integrated by Metal Additive Manufacturingcitations
- 2019On the Influence of Capillary-Based Structural Health Monitoring on Fatigue Crack Initiation and Propagation in Straight Lugscitations
- 2018Fatigue performance of powder bed fused Ti-6Al-4V component with integrated chemically etched capillary for structural health monitoring application.citations
- 2018Effective Structural Health Monitoring through the Monitoring of Pressurized Capillaries in Additive Manufactured Materials
- 2017Effect of Surface Roughness on Fatigue Crack Initiation in Additive Manufactured components with Integrated Capillary for SHM Application
- 2017Proof of Concept of Integrated Load Measurement in 3D Printed Structurescitations
- 2017Model-based temperature feedback control of laser cladding using high-resolution hyperspectral imagingcitations
- 2017Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring Systemcitations
- 2016Hardware-in-the-loop control of additive manufacturing processes using temperature feedbackcitations
- 2016Evaluation of the Diffuse Reflectivity Behaviour of the Melt Pool During the Laser Metal Deposition Process
- 2016Temperature Feedback Control of Laser Cladding Using High Resolution Hyperspectral Imaging
- 2015Hardware-in-the-loop control of additive manufacturing processes using temperature feedback
Places of action
Organizations | Location | People |
---|
article
Comparison and Analysis of Hyperspectral Temperature Data in Directed Energy Deposition
Abstract
Directed energy deposition is an additive manufacturing process that allows the production of near net shape structures. Moreover, the process can also be applied for the repair of high value components. To obtain structures with consistent good characteristics, the directed energy deposition process requires the implementation of a control system. The currently applied approaches for control that are discussed in the literature have specifically focused on melt-pool temperature control. Pyrometers have been used for such purposes; however, they provide only a single scalar value without any spatial information. In this paper, the implementation of a high-speed hyperspectral camera-based system is discussed with a high spatial resolution unlike the pyrometers. Different calibration and temperature estimation procedures for this camera-based system are evaluated and analyzed. The number of effective wavelengths needed for temperature estimation will be discussed in detail and provide an outlook on the potential of this hyperspectral camera-based system. In addition to the number of wavelengths, another important aspect of the temperature estimation methods is the stability with respect to disturbances. Within this paper, the impact of the nominal laser power will be evaluated on the stability of the temperature signals for a control system.