People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wallaschek, Jörg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Investigations on the effect of standing ultrasonic waves on the microstructure and hardness of laser beam welded butt joints of stainless steel and nickel base alloycitations
- 2022Impact of surface texture on ultrasonic wire bonding process
- 2022Investigations on the Specifics of Laser Power Modulation in Laser Beam Welding of Round Barscitations
- 2022Deep Learning-Based Weld Contour and Defect Detection from Micrographs of Laser Beam Welded Semi-Finished Productscitations
- 2021Influence of process-related heat accumulation of laser beam welded 1.7035 round bars on weld pool shape and weld defectscitations
- 2020Influence of ultrasound on pore and crack formation in laser beam welding of nickel-base alloy round bars
- 2020Air-coupled ultrasound time reversal (ACU-TR) for subwavelength non-destructive imagingcitations
- 2020Influence of Ultrasound on Pore and Crack Formation in Laser Beam Welding of Nickel-Base Alloy Round Barscitations
- 2019Surface integrity of laser beam welded steel– aluminium alloy hybrid shafts after turning
- 2019Surface Integrity of Laser Beam Welded Steel–Aluminium Alloy Hybrid Shafts after Turningcitations
Places of action
Organizations | Location | People |
---|
article
Investigations on the effect of standing ultrasonic waves on the microstructure and hardness of laser beam welded butt joints of stainless steel and nickel base alloy
Abstract
<jats:p>Joining dissimilar metals with superior quality is important to provide tailored, lightweight, and cost-efficient components. Expensive and durable materials are exceptionally used where the cheaper material would not withstand the requirements. With laser beam welding, dissimilar metals can already be joined with high precision, low heat input, and a customizable mixing degree. Introducing ultrasonic excitation into the weld pool is a promising approach for further improvements like customizing the solidification morphology and avoiding weld defects. The experiments are carried out with round bars of 30 mm diameter made of 1.4301 steel alloy and 2.4856 nickel base alloy. Ultrasonic-assisted laser beam butt welding is conducted on rotating specimens with a laser beam power of 7.75 kW and a welding speed of 0.95 m/min. The specimens are evaluated by metallographic cross sections, hardness measurements, and energy-dispersive x-ray spectroscopy (EDX). The ultrasound is used to excite an eigenmode of the sample and the weld position is varied at stress- and displacement-nodes. Two different mechanisms of acoustic grain refinement are revealed. Heterogeneous nucleation is fostered in weld seams that are positioned in stress-nodes, and the fragmentation of dendrites is fostered in displacement-nodes. The welds' chemical compositions correspond to the change of solidification morphology.</jats:p>