Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bokelmann, Tjorben

  • Google
  • 2
  • 10
  • 61

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2022High deposition rate welding with a laser line optics with the laser-assisted double-wire deposition welding process with nontransferred arc5citations
  • 2019Influence of Powder Deposition on Powder Bed and Specimen Properties56citations

Places of action

Chart of shared publication
Biester, Kai
1 / 5 shared
Kaierle, Stefan
1 / 58 shared
Lammers, Marius
1 / 11 shared
Barroi, Alexander
1 / 6 shared
Hermsdorf, Jörg
1 / 51 shared
Diener, Alexander
1 / 3 shared
Kwade, Arno
1 / 20 shared
Vietor, Thomas
1 / 8 shared
Beitz, Steffen
1 / 1 shared
Uerlich, Roland
1 / 2 shared
Chart of publication period
2022
2019

Co-Authors (by relevance)

  • Biester, Kai
  • Kaierle, Stefan
  • Lammers, Marius
  • Barroi, Alexander
  • Hermsdorf, Jörg
  • Diener, Alexander
  • Kwade, Arno
  • Vietor, Thomas
  • Beitz, Steffen
  • Uerlich, Roland
OrganizationsLocationPeople

article

High deposition rate welding with a laser line optics with the laser-assisted double-wire deposition welding process with nontransferred arc

  • Biester, Kai
  • Kaierle, Stefan
  • Bokelmann, Tjorben
  • Lammers, Marius
  • Barroi, Alexander
  • Hermsdorf, Jörg
Abstract

<jats:p>Laser-assisted double-wire welding with a nontransferred arc is used for cladding workpieces. The wire material is melted by an arc and dropped onto the substrate, where a laser beam is oscillated by a galvanometer scanner to achieve bonding of the melt with good contact angles that do not result in undercuts. In this study, the galvanometer scanner was replaced by a beam shaping optics generating a line with a width of 1.2 mm and a length of 9.1 mm. Based on Design of Experiments, the laser power was varied in a range from 1500 to 2000 W and the welding speed in a range from 600 to 800 mm/min. Single weld beads of AISI 316L were welded onto a mild steel of AISI 1024 according to a full factorial design at three repetitions per parameter set. The paper examines whether the contact angles of the weld beads produced with the line optics are comparable to those obtained by oscillating the laser beam. In addition, the dilution of the material with the substrate was determined in micrographs. The results show that the bonding to the substrate can be achieved. The parameter window for the laser power with beam shaping line optics is different from that with the oscillated laser beam. The required laser power is 1.5–2 times greater.</jats:p>

Topics
  • Deposition
  • impedance spectroscopy
  • experiment
  • melt
  • steel
  • wire