People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Seffer, Sarah
Laser Zentrum Hannover
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Investigations on laser beam welding of thin aluminum foils with additional filler wirecitations
- 2023Laser beam welding of brass with combined core and ring beamcitations
- 2022Laser beam brazing of aluminum alloys in XHV-adequate atmosphere with surface deoxidation by ns-pulsed laser radiationcitations
- 2022Investigations on laser beam welding of thin foils of copper and aluminum regarding weld seam quality using different laser beam sourcescitations
- 2022Investigations on the effect of standing ultrasonic waves on the microstructure and hardness of laser beam welded butt joints of stainless steel and nickel base alloycitations
- 2022Investigations on laser beam welding of thick steel plates using a high-power diode laser beam sourcecitations
- 2022Deep Learning-Based Weld Contour and Defect Detection from Micrographs of Laser Beam Welded Semi-Finished Productscitations
- 2021Investigations on laser welding of dissimilar joints of stainless steel and copper for hot crack preventioncitations
- 2020Influence of Ultrasound on Pore and Crack Formation in Laser Beam Welding of Nickel-Base Alloy Round Barscitations
Places of action
Organizations | Location | People |
---|
article
Investigations on laser welding of dissimilar joints of stainless steel and copper for hot crack prevention
Abstract
<jats:p>Fusion joining of stainless steel to copper without a filler material for pipe processing proves itself to be challenging due to the very different material properties of the joining partners and very heterogeneous characteristics in the weld metal due to different mixing ratios. One of the most common weld defects in this material combination is solidification cracking in the weld metal due to liquid copper accumulation between the stainless steel grain boundaries, which cannot withstand the tensile tensions while cooling down. Consequently, these cracks can reduce the mechanical properties, lead to leakages or cause faster corrosion. To prevent cracking, a precise control of the melting and mixing ratio of stainless steel and copper is needed. Laser beam welding offers many capabilities to influence the resulting weld metal shape and size as well as the mixing ratios with different approaches such as parameter optimization, inline process control, or the use of different beam shapes. This work shows different weld configurations and applications using sheets with thicknesses in the area of 1 mm and pipe samples. The main focus is on different solutions to influence the copper dilution and the weld metal geometry for solidification crack prevention. Therefore, a design of experiment approach and inline weld depth control using optical coherence tomography (OCT) data is used for the lap weld configuration to limit the copper dilution below 10 wt. % in steel dominated weld metals. Moreover, the benefits of adjustable intensity profiles for the butt weld configuration to control the shape and dimensions of the weld metal and mixing behavior with different power distributions in the laser beam welding spot are shown. The overall results indicate that solidification cracking in steel-copper joints can be influenced by different process approaches.</jats:p>