People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reisgen, Uwe
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Reduction of distortion during laser beam welding by applying an in situ alloyed LTT effect and considering influencing factors
- 2024Simulation of wire metal transfer in the cold metal transfer (CMT) variant of gas metal arc welding using the smoothed particle hydrodynamics (SPH) approachcitations
- 2024Influence of laser beam welding in vacuum on the magnetic properties of non-grain oriented electrical steel sheets
- 2024Development of an in situ alloying method for high-performance welding processes to achieve an LTT effect by local modification of the alloy content
- 2024Modelling the Evolution of Phases during Laser Beam Welding of Stainless Steel with Low Transformation Temperature Combining Dilatometry Study and FEMcitations
- 2023Optimization of the weldability and joint strength of Al Mg Si cladded aluminum alloys via RSW: a statistical and metallurgical approach
- 2022Residual Stress Reduction with the LTT Effect in Low Carbon Manganese-Steel through Chemical Composition Manipulation Using Dissimilar Filler Material in Laser Beam Weldingcitations
- 2022Strain Monitoring of a Structural Adhesive Bond by Embedding a Polymer Optical Fibercitations
- 2022Curing Adhesives with Woven Fabrics Made of Polymer Optical Fibre and PET Yarncitations
- 2021Individualized and controlled laser beam pretreatment process for adhesive bonding of fiber-reinforced plastics. II. Automatic laser process control by spectrometrycitations
- 2019Manipulating the melt propagation of short arc gas metal arc welding with diode lasers <1 kW for improvement in flexibility and process robustnesscitations
- 2019Influence of variation of energy per unit length on mechanical-technological properties of ultra-high-strength steel 22MnB5 in the laser beam welding processcitations
- 2017Comparison of submerged arc welding process modification influence on thermal strain by in-situ neutron diffractioncitations
- 2016Tensile stress analyses through digital image correlation of single lap joints of high strength steel and aluminium alloy using adhesive bondingcitations
- 2011Theoretische und experimentelle Untersuchung des spaltungsinduzierten Versagens von TRC Prüfkörpern
- 2008Reducing degradation effects in SOFC stacks manufactured at Forschungszentrum Jülich - Approaches and results
- 2005Overview of the development of solid oxide fuel cells at Forschungszentrum Juelich
- 2004Solid oxide fuel cell development at Forschungszentrum Juelich
Places of action
Organizations | Location | People |
---|
article
Manipulating the melt propagation of short arc gas metal arc welding with diode lasers <1 kW for improvement in flexibility and process robustness
Abstract
<jats:p>The processes that were performed for the studies on manipulating the melt propagation of the short arc gas metal arc welding process were carried out with a diode laser emitting with mean intensities of maximum 1.1 × 104 W/cm2 and a wavelength of 1025 nm on 1.0330 low carbon steel with a thickness of 1 mm. To determine the ability of the laser to manipulate the melt, investigations in terms of static displacement and dynamic movement of the laser beam via a scanner optic were executed. By displacing the laser spot statically and parallel to the weld, the shape of the bead can be influenced, and furthermore misalignments of fillet welded sheets up to 3 mm can be compensated. The extent of displacement and the influence of the laser energy on the weld bead geometry were examined through metallographic analysis regarding the width and height of the beads as well as the shift in position. The use of a two-dimensional scanner optic adds the potential of moving the melt in nonlinear shapes. The high speed camera footage is examined to visualize the melt dynamics in displacement operation. For comparing the weld properties of weld beads with and without laser stabilization in static and dynamic operations, the transient current and voltage curves are recorded and evaluated regarding alterations of the mean values.</jats:p>