People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Piili, Heidi
University of Turku
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industriescitations
- 2023Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industriescitations
- 2023Electrochemical properties of graphite/nylon electrodes additively manufactured by laser powder bed fusioncitations
- 2021Mechanical properties and microstructure of additively manufactured stainless steel with laser welded jointscitations
- 2021Prospects for laser based powder bed fusion in the manufacturing of metal electrodes: A reviewcitations
- 2020Additive Manufacturing—Past, Present, and the Futurecitations
- 2020Effects of manufacturing parameters and mechanical post-processing on stainless steel 316L processed by laser powder bed fusioncitations
- 2020Characterization of part deformations in laser powder bed fusion of stainless steel 316Lcitations
- 2020Testing and analysis of additively manufactured stainless steel CHS in compressioncitations
- 2020Integration of Simulation Driven DfAM and LCC Analysis for Decision Making in L-PBFcitations
- 2019Effective parameters on the fatigue life of metals processed by powder bed fusion technique: A short reviewcitations
- 2019Study of phenomenon of fibre-laser-MIG/MAG-hybrid-weldingcitations
- 2018Correlation between pyrometer monitoring and active illuminaton imaging of laser assisted additive manufacturing of stainless steelcitations
- 2018Interaction between laser beam and paper materialscitations
- 2018Effect of process parameters to monitoring of laser assisted additive manufacturing of alumina ceramicscitations
- 2018Laser scribing of stainless steel with and without work mediacitations
- 2017Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturingcitations
- 2017Preliminary Investigation on Life Cycle Inventory of Powder Bed Fusion of Stainless Steelcitations
- 2015Preliminary comparison of properties between Ni-electroplated stainless steel parts fabricated with laser additive manufacturing and conventional machiningcitations
- 2015Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steelcitations
- 2015Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturingcitations
- 2015Preliminary Investigation of Keyhole Phenomena during Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steelcitations
- 2014Katsaus lisäävän valmistuksen (aka 3D-tulostus) mahdollisuuksiin ja kustannuksiin metallisten tuotteiden valmistuksessa: Case jauhepetitekniikka ; Overview to possibilities and costs of additive manufacturing (aka 3D printing) of metallic materials: Case powder bed fusion technique
- 2014Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramicscitations
- 2013Digital design and manufacturing process comparison for new custom made product family – a case study of a bathroom faucetcitations
- 2010The characteristics of high power fibre laser weldingcitations
Places of action
Organizations | Location | People |
---|
document
Correlation between pyrometer monitoring and active illuminaton imaging of laser assisted additive manufacturing of stainless steel
Abstract
Laser assisted additive manufacturing which can e.g. be used for manufacturing of 3-D parts from stainless steel powder layer-by-layer by assist of laser beam. Stainless steel is molten selectively with laser beam and solidified layers of material, attached to each other, form desired 3-D structure.Nowadays range of materials that can be used for laser assisted additive manufacturing is widened and high automation level of equipments has made this method more interesting process for manufacturing. This is why also methods to control the process have started to gain an essential role in laser assisted additive manufacturing processes. Control of process parameters is also essential to get good appearance, good quality and good strength properties of work piece still maintaining the optimum processing speed. Control of temperature in of process is most important of all numerous process factors.The objective of this study was to monitor selective laser melting process simultaneously with pyrometer and video camera system with active illumination. Aim of this study was also to find out correlation between phenomena captured with imaging system and pyrometer measurement data.All tests in this study were carried out at Lappeenranta University of Technology with trial set-up of IPG 200 W SM CW fiber laser and a layer of metal powder. An inert atmosphere was simulated by nitrogen gas flow during process. Material used in this study was EOS StainlessSteel PH1.Results indicate that several phenomena observed from video imaging system had correlation to pyrometer measurements. This makes pyrometer monitoring suitable method for controlling laser sintering process.Laser assisted additive manufacturing which can e.g. be used for manufacturing of 3-D parts from stainless steel powder layer-by-layer by assist of laser beam. Stainless steel is molten selectively with laser beam and solidified layers of material, attached to each other, form desired 3-D structure.Nowadays range of materials that can be used for laser assisted additive manufacturing is widened and high automation level of equipments has made this method more interesting process for manufacturing. This is why also methods to control the process have started to gain an essential role in laser assisted additive manufacturing processes. Control of process parameters is also essential to get good appearance, good quality and good strength properties of work piece still maintaining the optimum processing speed. Control of temperature in of process is most important of all numerous process factors.The objective of this study was to monitor selective laser melting process simultaneously with pyrometer and video ...