People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Piili, Heidi
University of Turku
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (26/26 displayed)
- 2023Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industriescitations
- 2023Impact of additive manufacturing on titanium supply chain: Case of titanium alloys in automotive and aerospace industriescitations
- 2023Electrochemical properties of graphite/nylon electrodes additively manufactured by laser powder bed fusioncitations
- 2021Mechanical properties and microstructure of additively manufactured stainless steel with laser welded jointscitations
- 2021Prospects for laser based powder bed fusion in the manufacturing of metal electrodes: A reviewcitations
- 2020Additive Manufacturing—Past, Present, and the Futurecitations
- 2020Effects of manufacturing parameters and mechanical post-processing on stainless steel 316L processed by laser powder bed fusioncitations
- 2020Characterization of part deformations in laser powder bed fusion of stainless steel 316Lcitations
- 2020Testing and analysis of additively manufactured stainless steel CHS in compressioncitations
- 2020Integration of Simulation Driven DfAM and LCC Analysis for Decision Making in L-PBFcitations
- 2019Effective parameters on the fatigue life of metals processed by powder bed fusion technique: A short reviewcitations
- 2019Study of phenomenon of fibre-laser-MIG/MAG-hybrid-weldingcitations
- 2018Correlation between pyrometer monitoring and active illuminaton imaging of laser assisted additive manufacturing of stainless steelcitations
- 2018Interaction between laser beam and paper materialscitations
- 2018Effect of process parameters to monitoring of laser assisted additive manufacturing of alumina ceramicscitations
- 2018Laser scribing of stainless steel with and without work mediacitations
- 2017Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturingcitations
- 2017Preliminary Investigation on Life Cycle Inventory of Powder Bed Fusion of Stainless Steelcitations
- 2015Preliminary comparison of properties between Ni-electroplated stainless steel parts fabricated with laser additive manufacturing and conventional machiningcitations
- 2015Overview of Sustainability Studies of CNC Machining and LAM of Stainless Steelcitations
- 2015Possibilities of CT Scanning as Analysis Method in Laser Additive Manufacturingcitations
- 2015Preliminary Investigation of Keyhole Phenomena during Single Layer Fabrication in Laser Additive Manufacturing of Stainless Steelcitations
- 2014Katsaus lisäävän valmistuksen (aka 3D-tulostus) mahdollisuuksiin ja kustannuksiin metallisten tuotteiden valmistuksessa: Case jauhepetitekniikka ; Overview to possibilities and costs of additive manufacturing (aka 3D printing) of metallic materials: Case powder bed fusion technique
- 2014Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramicscitations
- 2013Digital design and manufacturing process comparison for new custom made product family – a case study of a bathroom faucetcitations
- 2010The characteristics of high power fibre laser weldingcitations
Places of action
Organizations | Location | People |
---|
document
Laser scribing of stainless steel with and without work media
Abstract
The advantages such as tight restrictions for heat and mass transfer make micro-/milli scale devices of mixing and droplet formation viable to become widely used in specialty chemical industry. Small dimensions and simple geometry ensure laminar flow and mixing through diffusion, ensuring well-defined behavior of mixing and short reaction times. Combining dry etching by laser beam with wet chemical etching is expected to reduce the production costs of these novel devices.In this study the manufacturing of grooves in stainless steel SS 316L by means of laser micro-/milli processing was investigated. Deep and narrow channels with depth to width ratio of 1:1 at least are preferable, width is allowed to vary from 10-500 micrometer. Lasers used for this study were: 5 kW IPG YLR-5000 S, 200 W IPG YLS-200-SM-WC, 1 kW IPG YLR-1000-SM fiber lasers, 400 W Powerlase diode pumped Nd:YAG laser and 14 W diode pumped Nd:YVO4 laser. Chemical assisted laser scribing is also included in this study.Preliminary results show possibility to obtain channels with desired parameters in pulsed mode laser machining. However, investment cost for CW (continuous wave) lasers per kilowatt are in order of magnitude smaller than for pulsed lasers, that’s why the study was essentially focusing on lasers operating in CW mode. Optimal scribing parameters were defined by adjusting laser power, number of repetitions and speed. Preliminary experiments done without any media resulted in low quality grooves with moderate depth and burned edges. It was concluded in this study that finding a suitable chemical to improve to scribing process is a key moment of getting channels with acceptable quality.The advantages such as tight restrictions for heat and mass transfer make micro-/milli scale devices of mixing and droplet formation viable to become widely used in specialty chemical industry. Small dimensions and simple geometry ensure laminar flow and mixing through diffusion, ensuring well-defined behavior of mixing and short reaction times. Combining dry etching by laser beam with wet chemical etching is expected to reduce the production costs of these novel devices.In this study the manufacturing of grooves in stainless steel SS 316L by means of laser micro-/milli processing was investigated. Deep and narrow channels with depth to width ratio of 1:1 at least are preferable, width is allowed to vary from 10-500 micrometer. Lasers used for this study were: 5 kW IPG YLR-5000 S, 200 W IPG YLS-200-SM-WC, 1 kW IPG YLR-1000-SM fiber lasers, 400 W Powerlase diode pumped Nd:YAG laser and 14 W diode pumped Nd:YVO4 laser. Chemical assisted laser scribing is also included in this study.Preliminary results show ...