Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Devesse, Wim

  • Google
  • 14
  • 14
  • 178

Vrije Universiteit Brussel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (14/14 displayed)

  • 2020Spatial distributed spectroscopic monitoring of melt pool and vapor plume during the laser metal deposition process2citations
  • 2020Comparison of visual and hyperspectral monitoring of the melt pool during Laser Metal Depositioncitations
  • 2019Hyperspectral and Thermal Temperature Estimation During Laser Cladding18citations
  • 2017Proof of Concept of Integrated Load Measurement in 3D Printed Structures7citations
  • 2017Model-based temperature feedback control of laser cladding using high-resolution hyperspectral imaging17citations
  • 2017Fatigue Performance of Ti-6Al-4V Additively Manufactured Specimens with Integrated Capillaries of an Embedded Structural Health Monitoring System19citations
  • 2016Hardware-in-the-loop control of additive manufacturing processes using temperature feedback42citations
  • 2016Spectroscopic monitoring and melt pool temperature estimation during the laser metal deposition process16citations
  • 2016Evaluation of the Diffuse Reflectivity Behaviour of the Melt Pool During the Laser Metal Deposition Processcitations
  • 2016Temperature Feedback Control of Laser Cladding Using High Resolution Hyperspectral Imagingcitations
  • 2015Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing57citations
  • 2015Hardware-in-the-loop control of additive manufacturing processes using temperature feedbackcitations
  • 2015Spectroscopic monitoring and melt pool temperature estimation during the laser metal deposition processcitations
  • 2014Modeling of laser beam and powder flow interaction in laser cladding using ray-tracingcitations

Places of action

Chart of shared publication
Helsen, Jan
1 / 9 shared
Guillaume, Patrick
14 / 40 shared
Baere, Dieter De
13 / 26 shared
Ertveldt, Julien
1 / 16 shared
Sanchez Medina, Jorge
1 / 6 shared
Lison, Margot
2 / 2 shared
Hinderdael, Michaël
8 / 22 shared
Jardon, Zoé
1 / 12 shared
Strantza, Maria
2 / 13 shared
Graeve, Iris De
1 / 57 shared
Terryn, Herman
1 / 124 shared
Thienpont, Hugo
2 / 83 shared
Pauw, Ben De
3 / 4 shared
Smeesters, Lien
2 / 3 shared
Chart of publication period
2020
2019
2017
2016
2015
2014

Co-Authors (by relevance)

  • Helsen, Jan
  • Guillaume, Patrick
  • Baere, Dieter De
  • Ertveldt, Julien
  • Sanchez Medina, Jorge
  • Lison, Margot
  • Hinderdael, Michaël
  • Jardon, Zoé
  • Strantza, Maria
  • Graeve, Iris De
  • Terryn, Herman
  • Thienpont, Hugo
  • Pauw, Ben De
  • Smeesters, Lien
OrganizationsLocationPeople

article

Modeling of laser beam and powder flow interaction in laser cladding using ray-tracing

  • Guillaume, Patrick
  • Devesse, Wim
  • Baere, Dieter De
Abstract

Laser cladding, also known as direct metal deposition, is an additive manufacturing technique for the production of freeform metallic parts. In the laser cladding process, a high-power laser beam is directed onto the surface of a solid metallic workpiece while a jet of metallic powder is focused into the beam through a coaxial nozzle. The heating of the workpiece is governed by the laser light that is being absorbed, so that detailed simulations of the laser cladding process require an accurate knowledge of the light intensity pattern that reaches the workpiece after interaction with the powder jet. In the past, several statistical distributions have been proposed for modeling this intensity pattern. However, these require strong simplifications of the powder particle trajectories and do not take into account the complex powder flow profile that is present in practical systems. In this paper, the effect of the powder flow on the incident laser intensity is numerically studied under varying process conditions. A finite element simulation of the powder flow is performed and used to generate a set of powder particle trajectories using Monte Carlo simulation. A ray-tracing algorithm is developed to split the laser beam into multiple rays of light which get partly reflected and absorbed by the particles and the workpiece. Running the ray-tracing procedure over time allows the calculation of an averaged incident light intensity pattern as well as an averaged pattern of the energy absorbed by the particles that arrive at the workpiece. Several simulations are performed in order to study the effects of the used laser intensity pattern and the particle size distribution. The results are in good agreement with existing literature.

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • simulation
  • additive manufacturing