Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ressel, Wolfram

  • Google
  • 1
  • 6
  • 11

University of Stuttgart

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2020Using a New 3D-Printing Method to Investigate Rubber Friction Laws on Different Scales11citations

Places of action

Chart of shared publication
Götz, Tobias
1 / 1 shared
Kaliske, Michael
1 / 16 shared
Eckstein, Lutz
1 / 2 shared
Wegener, Daniel
1 / 1 shared
Hartung, Felix
1 / 1 shared
Friederichs, Jan
1 / 1 shared
Chart of publication period
2020

Co-Authors (by relevance)

  • Götz, Tobias
  • Kaliske, Michael
  • Eckstein, Lutz
  • Wegener, Daniel
  • Hartung, Felix
  • Friederichs, Jan
OrganizationsLocationPeople

article

Using a New 3D-Printing Method to Investigate Rubber Friction Laws on Different Scales

  • Götz, Tobias
  • Kaliske, Michael
  • Eckstein, Lutz
  • Ressel, Wolfram
  • Wegener, Daniel
  • Hartung, Felix
  • Friederichs, Jan
Abstract

<jats:title>ABSTRACT</jats:title><jats:p>Rubber friction is a complex phenomenon that is composed of different contributions. Because it always consists of a friction pairing, the road surface topology has a main impact on the adhesive and sliding characteristics in the rubber-road interaction. New manufacturing processes offer the means to develop specific road surfaces. By using a modified three-dimensional (3D) printing method based on selective laser melting with stainless steel, it is possible to create any desired surface up to a resolution of 20 μm. In this work, several metallic surfaces are built for two separate purposes. First, the rubber-road interaction is analyzed and compared for metal and asphalt. Second, theoretical friction laws are investigated with synthetic surfaces. Toward this aim, the friction coefficients are measured in both dry and wet conditions. A multiscale approach for friction properties on different length scales is implemented to accumulate the micro and mesoscopic friction into a macroscopic friction coefficient. On each length scale, a homogenization procedure generates the friction features as a function of slip velocity and contact pressure for the next coarser scale. Within the multiscale approach, adhesion implemented as nonlinear traction separation law is assumed to act only on microscopic length scales. By using the finite element method, the sensitivity of the influencing factors, such as macroscopic slip and load conditions, is investigated. The friction loss from dry to wet conditions cannot be explained by loss of adhesion alone. Hysteresis has to be affected as well. A possible hypothesis for this is the trapped water pools in the texture. The road surface is effectively smoothed and thus hysteresis reduced. To verify this hypothesis, a hysteretic friction model is calibrated to dry measurements. The cavities in the modeled texture are then filled incrementally to simulate various amounts of trapped water.</jats:p>

Topics
  • impedance spectroscopy
  • surface
  • stainless steel
  • selective laser melting
  • texture
  • rubber
  • homogenization