Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wilson, Ron

  • Google
  • 1
  • 6
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Adhesion of Indirect MOD Resin Composite Inlays Luted With Self-adhesive and Self-etching Resin Cements13citations

Places of action

Chart of shared publication
Pilecki, P.
1 / 3 shared
Abe, T.
1 / 4 shared
Inukai, T.
1 / 1 shared
Ito, Y.
1 / 11 shared
Foxton, Richard Mark
1 / 29 shared
Watson, Timothy F.
1 / 17 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Pilecki, P.
  • Abe, T.
  • Inukai, T.
  • Ito, Y.
  • Foxton, Richard Mark
  • Watson, Timothy F.
OrganizationsLocationPeople

article

Adhesion of Indirect MOD Resin Composite Inlays Luted With Self-adhesive and Self-etching Resin Cements

  • Pilecki, P.
  • Abe, T.
  • Inukai, T.
  • Wilson, Ron
  • Ito, Y.
  • Foxton, Richard Mark
  • Watson, Timothy F.
Abstract

This study investigated the effect of loading on the bond strength to dentin and microleakage of MOD indirect composite restorations bonded with self-adhesive and self-etching resin cements with or without acid etching of the proximal enamel margins. Class II MOD cavities were prepared in 48 molar teeth into dentin and divided into three groups of 16 teeth. Impressions were taken and indirect composite inlays fabricated (Estenia C & B). The enamel margins of the proximal boxes of half the specimens were phosphoric acid etched, and the inlays were cemented with one of three cements (Panavia F 2.0, SA Cement, or Rely X Unicem). After luting, eight teeth in each cement group were mechanically loaded at 2.5 cycles/s for 250,000 cycles. Unloaded teeth acted as controls. Teeth were stored in Rhodamine B solution for 24 hours, sectioned buccolingually at the proximal boxes to examine microleakage using confocal microscopy, and further sectioned for μTBS testing of the resin-dentin interface. Analysis of variance was performed to assess the effect of loading and acid etching on microleakage and bond strength. Acid etching had no effect on microleakage. No significant difference in the dentin bond strengths between the three cements existed after loading. Panavia F 2.0 exhibited a significant reduction in bond strength. With regard to microleakage at the proximal boxes, loading had no effect on dye penetration at the cavity floor. However, at the axial walls, loading had a significant deleterious effect on Panavia F 2.0. No difference in microleakage existed between the three cements at both sites before and after loading. In conclusion, the two tested self-adhesive cements exhibited similar bond strengths before and after loading to the self-etching resin cement. Loading reduced dentin bond strengths and increased microleakage at the resin-dentin interface. However, acid etching of the enamel margins had no significant effect on microleakage in the approximal regions of the bonded inlays.

Topics
  • strength
  • composite
  • cement
  • etching
  • resin
  • confocal microscopy