Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Copelovici, N.

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Super-elasticity in vitro assessment of CuNiTi wires according to their Austenite finish temperature and the imposed displacement.2citations

Places of action

Chart of shared publication
Tran, Maï-Linh
1 / 1 shared
Wagner, D.
1 / 10 shared
Lefebvre, F.
1 / 5 shared
Ml, Tran
1 / 1 shared
Laheurte, P.
1 / 14 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Tran, Maï-Linh
  • Wagner, D.
  • Lefebvre, F.
  • Ml, Tran
  • Laheurte, P.
OrganizationsLocationPeople

article

Super-elasticity in vitro assessment of CuNiTi wires according to their Austenite finish temperature and the imposed displacement.

  • Tran, Maï-Linh
  • Wagner, D.
  • Lefebvre, F.
  • Ml, Tran
  • Copelovici, N.
  • Laheurte, P.
Abstract

<h4>Objectives</h4>To assess the super-elasticity of CuNiTi wires (Ormco, Glendora, Calif) according to their Austenite finish temperature (Af) and to the imposed displacement. The secondary objective was to compare the wire dimensions with the stated measurements and to study interbatch variability.<h4>Materials and methods</h4>10 types of CuNiTi wires (Ormco, Glendora, Calif) (n = 350) were investigated at 36 ± 1°C, with conventional brackets (Victory Series, 3M Unitek, Monrovia, Calif). Tensile test with coronoapical displacement ranging from 1 to 5 mm of the canine bracket was imposed. The wire dimensions were initially measured from two batches (n = 10).<h4>Results</h4>Dimensional heterogeneity varied by ± 2.00% compared to the manufacturer's data, and even up to 5.54% for 0.014-inch CuNiTi (P = .00069). However, all unloading forces were reproducible. In decreasing order, the forces delivered by a CuNiTi 27 were greater than those with CuNiTi 35 and 40. The super-elasticity was expressed only for displacements of 1 to 2 mm, at best up to 3 mm for 0.014-inch CuNiTi 27.<h4>Conclusions</h4>The value of Af as well as the amount of imposed displacement seem to influence the expression of the super-elasticity of CuNiTi wires and the amount of corrected malocclusion. Among the tested wires, under these experimental conditions, 0.014-inch wire could be suitable as a first archwire. CuNiTi 35, therefore, seems to offer the best compromise among the force level, the expression of super-elasticity and the amount of malocclusion correction.

Topics
  • elasticity
  • wire