People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kaszyca, Kamil
Institute of Electronic Materials Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Using SPS Sintering System in Fabrication of Advanced Semiconductor Materials
- 2022Thermoelectric properties of bismuth-doped magnesium silicide obtained by the self-propagating high-temperature synthesiscitations
- 2019Experimental and numerical studies of micro- and macromechanical properties of modified copper–silicon carbide compositescitations
- 2017Synthesis and characterization of antimony telluride for thermoelectric And optoelectronic applicationscitations
- 2017Microstructure and Thermal Properties of Cu-SiC Composite Materials Depending on the Sintering Techniquecitations
Places of action
Organizations | Location | People |
---|
article
Microstructure and Thermal Properties of Cu-SiC Composite Materials Depending on the Sintering Technique
Abstract
The presented paper investigates the relationship between the microstructure and thermal properties of copper–silicon carbide composites obtained through hot pressing (HP) and spark plasma sintering (SPS) techniques. The microstructural analysis showed a better densification in the case of composites sintered in the SPS process. TEM investigations revealed the presence of silicon in the area of metallic matrix in the region close to metal-ceramic boundary. It is the product of silicon dissolving process in copper occurring at an elevated temperature. The Cu-SiC interface is significantly defected in composites obtained through the hot pressing method, which has a major influence on the thermal conductivity of materials.