Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Djuran, Milos

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Synthesis and structural analysis of polynuclear silver(I) complexes with 4,7-phenanthroline3citations

Places of action

Chart of shared publication
Glišić, Biljana
1 / 5 shared
Savić, Nada
1 / 1 shared
Stanojevic, Ivana
1 / 2 shared
Crochet, Aurélien
1 / 1 shared
Fromm, Katharina
1 / 1 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Glišić, Biljana
  • Savić, Nada
  • Stanojevic, Ivana
  • Crochet, Aurélien
  • Fromm, Katharina
OrganizationsLocationPeople

article

Synthesis and structural analysis of polynuclear silver(I) complexes with 4,7-phenanthroline

  • Djuran, Milos
  • Glišić, Biljana
  • Savić, Nada
  • Stanojevic, Ivana
  • Crochet, Aurélien
  • Fromm, Katharina
Abstract

<jats:p>New polynuclear silver(I) complexes, [Ag(CF3SO3)(4,7-phen)(CH3CN)]n (1) and [Ag(PO2F2)(4,7-phen)]n (2), were synthesized by the reaction of 4,7-phenanthroline (4,7-phen) and the corresponding AgX salt (X = CF3SO3 - and PF6 -) in 1:2 mole ratio, respectively, in methanol/acetone (1:1 volume ratio) at room temperature. The characterization of the complexes was established on the basis of elemental microanalysis, IR and NMR (1H and 13C) spectroscopic techniques, while their crystal structures were determined by single-crystal X-ray diffraction analysis. The results of spectroscopic and crystallographic analyses revealed that in these complexes, 4,7-phen behaves as a bridging ligand between two metal ions, while the remaining coordination sites of the Ag(I) ions are occupied by the oxygen atom of CF3SO3 - and an acetonitrile nitrogen atom in 1 or by two oxygen atoms from two PO2F2 -, formed after hydrolysis of PF6 -, in 2. In the solid state, both complexes are coordination polymers in which the geometry around the Ag(I) ions is distorted tetrahedral.</jats:p>

Topics
  • impedance spectroscopy
  • polymer
  • silver
  • x-ray diffraction
  • Oxygen
  • Nitrogen
  • Nuclear Magnetic Resonance spectroscopy