Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Venugopalan, T.

  • Google
  • 1
  • 1
  • 4

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Modified coke breeze distribution in iron ore sintering - a novel technique of reducing energy consumption and improving quality4citations

Places of action

Chart of shared publication
Prasad, D.
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Prasad, D.
OrganizationsLocationPeople

article

Modified coke breeze distribution in iron ore sintering - a novel technique of reducing energy consumption and improving quality

  • Prasad, D.
  • Venugopalan, T.
Abstract

<jats:p>In normal sintering of iron ore, there is a wide difference in temperature of the sinter bed between top and bottom; i.e. the flame front temperature of the sinter bed gradually increases towards the bottom because the lower part gets longer time for drying and preheating by exit gas. Therefore, the top part may have insufficient fusion and the bottom is excessively fused. Thus, sinter quality may become inhomogeneous and the coke breeze requirement becomes higher than the actual thermal requirement. If it is charged in multiple layers; e.g. higher amount of coke at the top and a lower amount of coke at the bottom, heat will be homogeneously distributed and the actual coke requirement would be lower than the existing. However, no study has been done so far on this. Therefore, the current study explores the possibility of reducing energy consumption in iron ore sintering by reducing the coke ratio from top to bottom without deteriorating the sinter property. 12% reduction in coke breeze rate has been found and the sinter quality has been improved by the use of a triple layer of sinter mix with a lower coke rate towards the bottom. Further, when 5-vol% of oxygen has been enriched in suction gas along with using a triple layer of sinter mix, up to an 18-wt% reduction in coke breeze has been found.</jats:p>

Topics
  • impedance spectroscopy
  • Oxygen
  • iron
  • drying
  • sintering