People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Braga, Mh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2021Direct growth of MoS2 on electrolytic substrate and realization of high-mobility transistorscitations
- 2021Structural Batteries: A Reviewcitations
- 2021An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolytecitations
- 2020Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistancecitations
- 2020Experimental and ab initio study of the Ag-Li system for energy storage and high-temperature solderscitations
- 2018Formation enthalpy of Ga-Li intermetallic phases. Experiment vs. calculationscitations
- 2018Extraordinary Dielectric Properties at Heterojunctions of Amorphous Ferroelectricscitations
- 2017Electric Dipoles and Ionic Conductivity in a Na+ Glass Electrolytecitations
- 2017First principles, thermal stability and thermodynamic assessment of the binary Ni-W systemcitations
- 2017Alternative strategy for a safe rechargeable batterycitations
- 2015Theoretical investigation of defect structure in B2 TrSc (Tr=Cd, Ru) alloyscitations
- 2014Li-Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessmentcitations
- 2014Optimization and assessment of the Ag-Ca phase diagramcitations
- 2013Experimental and First Principles Study of the Ni-Ti-W Systemcitations
- 2012Study of the Cu-Li-Mg-H system by thermal analysiscitations
- 2010Neutron powder diffraction and first-principles computational studies of CuLixMg2-x (x congruent to 0.08), CuMg2, and Cu2Mgcitations
- 2007THE BEHAVIOUR OF THE LATTICE PARAMETERS IN THE Bi-Sn-Zn SYSTEMcitations
- 2000The Cu-Li-Mg system at room temperaturecitations
Places of action
Organizations | Location | People |
---|
article
THE BEHAVIOUR OF THE LATTICE PARAMETERS IN THE Bi-Sn-Zn SYSTEM
Abstract
Lattice parameters, coefficients of thermal expansion and mass density were determined by means of X-ray powder diffraction between 30 and 180 degrees C (or 240 degrees C - depending on samples' composition). Rietveld refinement was performed in order to obtain phases' lattice parameters at each temperature. The Panalytical X'Pert Pro MPD was used for room temperature X-ray diffraction experiments (RT-XRD) with bulk samples. The aim was to identify the phases that were present in the sample, as well as, their lattice parameters. For some samples, powder high temperature X-ray diffraction measurements (HT-XRD) were also performed, under a vacuum of 10(-5) mbar or an argon atmosphere. It was found that the lattice parameters of (Bi), (Sn) and (Zn) don't change with the composition, at room temperature, as expected since all samples belong to the three phase region. It was also concluded that (Bi) behaves like an isometric crystalline solid on the contrary of (Zn) that has different expansion coefficients for different crystallographic directions a (= b) and c.