People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Candan, Zeki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Preparation and characterization of transparent advanced smart nanocomposites reinforced by nanofibrillated cellulose/poly(methyl methacrylate)/methyl methacrylate/benzoyl peroxidecitations
- 2024Performance characterization of plywood panels bonded with melamine-urea-formaldehyde resin and cellulose nanofibril/borax as an additivecitations
- 2024Characterization of nanocellulose/pyrolysis oil nanocomposite films
- 2020Quasi-static and dynamic mechanical thermal performance of date palm/glass fiber hybrid compositescitations
- 2018Thermal insulation properties of hybrid textile reinforced biocomposites from food packaging wastecitations
- 2017Hybrid composites from coir fibers reinforced with woven glass fabrics: Physical and mechanical evaluationcitations
- 2017Matrix impact on the mechanical, thermal and electrical properties of microfluidized nanofibrillated cellulose compositescitations
- 2016Microscopic investigation of defects in thermally compressed poplar wood panels
Places of action
Organizations | Location | People |
---|
article
Performance characterization of plywood panels bonded with melamine-urea-formaldehyde resin and cellulose nanofibril/borax as an additive
Abstract
In this study, different loading levels of cellulose nanofibril and borax were added as reinforcement in melamine-urea-formaldehyde adhesive to enhance the performance properties of plywood panels as engineered wood composites. Physical properties (density, thickness swelling, water absorption, and moisture content), mechanical properties (modulus of rupture, modulus of elasticity, and bonding strength), and formaldehyde content were tested using relevant standards. The results showed that cellulose nanofibril and borax had a synergistic effect, resulting in improved physico-mechanical properties. The best results were obtained by combining 3 % cellulose nanofibril and borax. It was determined that the combination of cellulose nanofibril and borax reinforcement resulted in a significant improvement of around 15 % in the thickness swelling, water absorption, and moisture content of plywood panels. The combination of cellulose nanofibril and borax reinforcing resulted in a significant increase of around 26 % in the modulus of rupture and modulus of elasticity of plywood panels, with a bonding strength of around 47 %. The reinforcement technique did result in a 34 % decrease in free formaldehyde content. As a consequence, cellulose nanofibril and borax can be used as effective additives in the production of plywood panels to enhance their performance properties.