People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gelinsky, Michael
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (35/35 displayed)
- 2024Poly(dl-lactide) Polymer Blended with Mineral Phases for Extrusion 3D Printing—Studies on Degradation and Biocompatibilitycitations
- 20243D bioprinting of mouse pre-osteoblasts and human MSCs using bioinks consisting of gelatin and decellularized bone particlescitations
- 2024Gelatin Methacryloyl (GelMA) - 45S5 Bioactive Glass (BG) Composites for Bone Tissue Engineering: 3D Extrusion Printability and Cytocompatibility Assessment Using Human Osteoblastscitations
- 2023Advanced Polymeric Membranes as Biomaterials Based on Marine Sources Envisaging the Regeneration of Human Tissuescitations
- 2023Mesoporous Bioactive Glass-Incorporated Injectable Strontium-Containing Calcium Phosphate Cement Enhanced Osteoconductivity in a Critical-Sized Metaphyseal Defect in Osteoporotic Ratscitations
- 2022Oxygen-sensitive nanoparticles reveal the spatiotemporal dynamics of oxygen reduction during magnesium implant biodegradationcitations
- 2022Quantification of calcium content in bone by using ToF-SIMS-a first approach
- 2022Think outside the boxcitations
- 20223D Extrusion Printing of Biphasic Anthropomorphic Brain Phantoms Mimicking MR Relaxation Times Based on Alginate-Agarose-Carrageenan Blendscitations
- 2020New insights into ToF-SIMS imaging in osteoporotic bone researchcitations
- 2020Catechol Containing Polyelectrolyte Complex Nanoparticles as Local Drug Delivery System for Bortezomib at Bone Substitute Materialscitations
- 2020Electrodeposition of Sr-substituted hydroxyapatite on low modulus beta-type Ti-45Nb and effect on in vitro Sr release and cell responsecitations
- 2019Investigation of strontium transport and strontium quantification in cortical rat bone by time-of-flight secondary ion mass spectrometrycitations
- 2019Influence of cobalt chromium alloy surface modification on the roughness and wettability behavior of pine oil/hydroxyapatite as coatingcitations
- 2019Recapitulating bone development events in a customised bioreactor through interplay of oxygen tension, medium pH, and systematic differentiation approachescitations
- 2019Investigating the effect of sterilisation methods on the physical properties and cytocompatibility of methyl cellulose used in combination with alginate for 3D-bioplotting of chondrocytescitations
- 2019Investigating the effect of sterilisation methods on the physical properties and cytocompatibility of methyl cellulose used in combination with alginate for 3D-bioplotting of chondrocytescitations
- 2019Development and Characterization of Composites Consisting of Calcium Phosphate Cements and Mesoporous Bioactive Glass for Extrusion-Based Fabricationcitations
- 2019Electrodeposition of Sr-substituted hydroxyapatite on low modulus beta-type Ti-45Nb and effect on in vitro Sr release and cell response
- 2018S and B microalloying of biodegradable Fe-30Mn-1C - Effects on microstructure, tensile properties, in vitro degradation and cytotoxicitycitations
- 2018Influence of Regioselectively Sulfated Cellulose on in Vitro Vascularization of Biomimetic Bone Matricescitations
- 2018Factors affecting the mechanical and geometrical properties of electrostatically flocked pure chitosan fiber scaffoldscitations
- 2018Strontium-modification of porous scaffolds from mineralized collagen for potential use in bone defect therapycitations
- 2018Influence of deformation on the structure and mechanical properties of a titanium-based alloy obtained by self-propagating high temperature synthesis
- 2017Strontium release from Sr2+-loaded bone cements and dispersion in healthy and osteoporotic rat bonecitations
- 2017Development of novel titanium-based surfaces using plasma- and ion beam technologies
- 2017Heparin modification of a biomimetic bone matrix modulates osteogenic and angiogenic cell response in vitrocitations
- 2017Intrinsic 3D prestressingcitations
- 2017Developing a Customized Perfusion Bioreactor Prototype with Controlled Positional Variability in Oxygen Partial Pressure for Bone and Cartilage Tissue Engineeringcitations
- 2016Low temperature additive manufacturing of three dimensional scaffolds for bone-tissue engineering applicationscitations
- 2013Quantification of calcium content in bone by using ToF-SIMS–a first approach
- 2013Heparin modification of a biomimetic bone matrix for controlled release of VEGFcitations
- 2011Bioactive SrO-SiO<sub>2</sub> glass with well-ordered mesopores: Characterization, physiochemistry and biological propertiescitations
- 2010Stem Cell Engineering for Regeneration of Bone Tissuecitations
- 2006O-Phospho-L-serine modified calcium phosphate cements - material properties, in vitro and in vivo investigationscitations
Places of action
Organizations | Location | People |
---|
article
Heparin modification of a biomimetic bone matrix modulates osteogenic and angiogenic cell response in vitro
Abstract
In this study, the effect of heparin-modified collagen type I/hydroxyapatite (HA) nanocomposites on key processes of bone regeneration – osteogenesis and angiogenesis – was characterised in vitro. Two approaches were applied for heparin modification: it was either integrated during material synthesis (in situ) or added to the porous scaffolds after their fabrication (post). Cultivation of human bone marrow-derived stromal cells (hBMSC), in heparin-modified versus heparin-free scaffolds, revealed a positive effect of the heparin modification on their proliferation and osteogenic differentiation. The amount of heparin rather than the method used for modification influenced the cell response favouring proliferation at smaller amount (30 mg/g collagen) and differentiation at larger amount (150 mg/g collagen). A co-culture of human umbilical vein endothelial cells (HUVEC) and osteogenically induced hBMSC was applied for in vitro angiogenesis studies. Pre-vascular networks have formed in the porous structure of scaffolds which were not modified with heparin or modified with a low amount of heparin (30 mg/g collagen). The modification with higher heparin quantities seemed to inhibit tubule formation. Pre-loading of the scaffolds with VEGF influenced formation and stability of the pre-vascular structures depending on the presence of heparin: In heparin-free scaffolds, induction of tubule formation and sprouting was more pronounced whereas heparin-modified scaffolds seemed to promote stabilisation of the pre-vascular structures. In conclusion, the modification of mineralised collagen with heparin by using both approaches was found to modulate cellular processes essential for bone regeneration; the amount of heparin has been identified to be crucial to direct cell responses.