Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dilnawaz, F.

  • Google
  • 2
  • 5
  • 131

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2010Etoposide-loaded biodegradable amphiphilic methoxy (poly ethylene glycol) and poly (epsilon caprolactone) copolymeric micelles as drug delivery vehicle for cancer therapy.34citations
  • 2009Sustained antibacterial activity of doxycycline-loaded poly(D,L-lactide-co-glycolide) and poly(epsilon-caprolactone) nanoparticles.97citations

Places of action

Chart of shared publication
Ak, Mohanty
1 / 1 shared
Mohanty, C.
1 / 1 shared
Sk, Sahoo
2 / 4 shared
Misra, R.
1 / 3 shared
Acharya, S.
1 / 2 shared
Chart of publication period
2010
2009

Co-Authors (by relevance)

  • Ak, Mohanty
  • Mohanty, C.
  • Sk, Sahoo
  • Misra, R.
  • Acharya, S.
OrganizationsLocationPeople

article

Sustained antibacterial activity of doxycycline-loaded poly(D,L-lactide-co-glycolide) and poly(epsilon-caprolactone) nanoparticles.

  • Misra, R.
  • Acharya, S.
  • Dilnawaz, F.
  • Sk, Sahoo
Abstract

<h4>Aim</h4>To increase the entrapment efficiency of doxycycline (DXY)-loaded poly(D,L-lactide-co-glycolide) (PLGA):poly(epsilon-caprolactone) (PCL) nanoparticles by up to 70% by varying the different formulation parameters such as polymer ratio, amount of drug loading (w/w), solvent selection, electrolyte addition and pH in the formulation.<h4>Method</h4>Biodegradable polymers PLGA and PCL are used in various ratios for nanoparticle preparation using the water-in-oil-in-water double emulsion technique for water-soluble DXY. The physicochemical characterization of nanoparticles included size and surface charge measurement, study of surface morphology using scanning-electron microscopy, Fourier transform infrared spectroscopy study, differential scanning calorimetry analysis and in vitro release kinetics study.<h4>Results</h4>The mean particle size ranged from 230 to 360 nm, as measured by dynamic laser light scattering, and scanning-electron microscopy confirmed the spherical nature and smooth surface of the nanoparticles. Fourier transform infrared spectroscopy analysis of void nanoparticles, drug-loaded nanoparticles and native DXY indicated no interaction between the drug and polymer in the nanoparticle. Differential scanning calorimetry analysis of drug-loaded nanoparticles indicated a molecular level dispersion of DXY in the formulation. The antibacterial activity of native DXY and DXY-loaded nanoparticles were tested using a strain of Escherichia coli (DH5alpha) through growth inhibition and colony-counting method. The results indicated that DXY-loaded nanoparticles are more effective than native DXY due to the sustained release of DXY from nanoparticles in the E. coli strain.

Topics
  • nanoparticle
  • dispersion
  • surface
  • polymer
  • differential scanning calorimetry
  • electron microscopy
  • void
  • Fourier transform infrared spectroscopy
  • laser light scattering