Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tamaddon, F.

  • Google
  • 1
  • 4
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Microencapsulation of herbal bioactive drug by Chlorella Vulgaris microalgae as a nano-formulation for drug delivery to cellscitations

Places of action

Chart of shared publication
Aghazadeh, H.
1 / 1 shared
Taheri, P.
1 / 17 shared
Sangchooli, T.
1 / 1 shared
Ouni, M.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Aghazadeh, H.
  • Taheri, P.
  • Sangchooli, T.
  • Ouni, M.
OrganizationsLocationPeople

article

Microencapsulation of herbal bioactive drug by Chlorella Vulgaris microalgae as a nano-formulation for drug delivery to cells

  • Aghazadeh, H.
  • Taheri, P.
  • Sangchooli, T.
  • Ouni, M.
  • Tamaddon, F.
Abstract

Curcumin (CUR) acts as a strong protector against various diseases, including HIV, cardiovascular infection, cancer, and neurological and skin diseases. CUR, a polyphenols with pharmacological function, was successfully encapsulated in algae (Alg) cell (Chlorella Vulgaris) as confirmed by fluorescence microscopy, thermogravimetric analysis (TGA), and Fourier transform-infrared spectroscopy (FTIR). The effects of molar ratio, salutation, loading capacity, drug release rate, and selective toxicity were investigated in this study. After obtaining C. Vulgaris with entrapped CUR, this mixture was centrifuged and re-suspended in 10 mL of water along with the ultra-sonication. This step was carried out twice to remove methanol. Finally, the CUR-loaded C. Vulgaris was prepared to perform further experiments to determine the role of this algal species as a carrier. Thermal gravimetric analysis (TGA) showed that 83% of Chlorella microalga and 64% of CUR were destroyed at 600 °C. DPPH was used to evaluate CUR, which was more than 85% pure CUR. Fourier transform infrared spectroscopy (FTIR) spectral data were derived from all samples, including the control C. Vulgaris, CUR, and CUR-loaded C. Vulgaris using a Perkin-Elmer Lambda 30 UV/VIS spectrophotometer (AH and Aysel 2003) in the 200-400 nm UV region. Then, the FTIR spectrums of the items mentioned above were determined using a Shimadzu IR-470 plus device and were plotted. This study provides an overview of an effective nano-formulation of CUR for a targeted treatment option for various human diseases. In conclusion, the data proved that the C. Vulgaris cell could be used as a new stable carrier for CUR.

Topics
  • experiment
  • thermogravimetry
  • toxicity
  • Fourier transform infrared spectroscopy
  • fluorescence microscopy
  • gravimetric analysis