Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krauhausen, Michael

  • Google
  • 2
  • 4
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2023Sub-micron inline thickness measurement of cold-rolled metal strips by multi-wavelength interferometry and laser triangulation3citations
  • 2023High-resolution absolute range sensors based on the combination of frequency modulation and laser triangulation for heavy industry applicationcitations

Places of action

Chart of shared publication
Prellinger, Günther
2 / 2 shared
Pollinger, Florian
2 / 3 shared
Priem, Roland
2 / 2 shared
Claßen, Ralf
2 / 2 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Prellinger, Günther
  • Pollinger, Florian
  • Priem, Roland
  • Claßen, Ralf
OrganizationsLocationPeople

article

High-resolution absolute range sensors based on the combination of frequency modulation and laser triangulation for heavy industry application

  • Prellinger, Günther
  • Pollinger, Florian
  • Priem, Roland
  • Claßen, Ralf
  • Krauhausen, Michael
Abstract

Feedback control of metal strip rolling processes requires inline-capable, fast and robust thickness gauges. An optical thickness gauge is developed which measures the distance to the top and bottom of the strip with two optical sensors. They combine triangulation and multi-wavelength interferometry for a robust absolute high-resolution range measurement. Sinusoidal modulation interferometry is used to realize a very compact Fizeau-type multi-wavelength interferometer. The performance of the thickness gauge is studied in the laboratory under dynamic conditions that are close to production environment. The expanded measurement uncertainty of 0.48 μm of the system is thereby consistent with the observed deviation of the measurement values from a tactile reference sensor.

Topics
  • impedance spectroscopy
  • interferometry