Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dacal, Elena

  • Google
  • 1
  • 14
  • 12

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022A Smartphone-Based Platform Assisted by Artificial Intelligence for Reading and Reporting Rapid Diagnostic Tests: Evaluation Study in SARS-CoV-2 Lateral Flow Immunoassays12citations

Places of action

Chart of shared publication
Marcos Mencia, Daniel
1 / 1 shared
Canton, Rafael
1 / 4 shared
Lin, Lin
1 / 3 shared
Vladimirov, Alexander
1 / 1 shared
Pérez-Panizo, Nuria
1 / 1 shared
Mousa, Adriana
1 / 1 shared
Hernandez, Beatriz Romero
1 / 1 shared
Luengo-Oroz, Miguel
1 / 2 shared
Rodriguez-Dominguez, Mario
1 / 1 shared
Sanchez, Daniel Cuadrado
1 / 1 shared
Bermejo-Pelaez, David
1 / 1 shared
Alamo, Elisa
1 / 1 shared
Galan, Juan Carlos
1 / 1 shared
Mateos-Nozal, Jesus
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Marcos Mencia, Daniel
  • Canton, Rafael
  • Lin, Lin
  • Vladimirov, Alexander
  • Pérez-Panizo, Nuria
  • Mousa, Adriana
  • Hernandez, Beatriz Romero
  • Luengo-Oroz, Miguel
  • Rodriguez-Dominguez, Mario
  • Sanchez, Daniel Cuadrado
  • Bermejo-Pelaez, David
  • Alamo, Elisa
  • Galan, Juan Carlos
  • Mateos-Nozal, Jesus
OrganizationsLocationPeople

article

A Smartphone-Based Platform Assisted by Artificial Intelligence for Reading and Reporting Rapid Diagnostic Tests: Evaluation Study in SARS-CoV-2 Lateral Flow Immunoassays

  • Marcos Mencia, Daniel
  • Canton, Rafael
  • Lin, Lin
  • Vladimirov, Alexander
  • Pérez-Panizo, Nuria
  • Mousa, Adriana
  • Hernandez, Beatriz Romero
  • Luengo-Oroz, Miguel
  • Rodriguez-Dominguez, Mario
  • Dacal, Elena
  • Sanchez, Daniel Cuadrado
  • Bermejo-Pelaez, David
  • Alamo, Elisa
  • Galan, Juan Carlos
  • Mateos-Nozal, Jesus
Abstract

<jats:sec><jats:title>Background</jats:title><jats:p>Rapid diagnostic tests (RDTs) are being widely used to manage COVID-19 pandemic. However, many results remain unreported or unconfirmed, altering a correct epidemiological surveillance.</jats:p></jats:sec><jats:sec><jats:title>Objective</jats:title><jats:p>Our aim was to evaluate an artificial intelligence–based smartphone app, connected to a cloud web platform, to automatically and objectively read RDT results and assess its impact on COVID-19 pandemic management.</jats:p></jats:sec><jats:sec><jats:title>Methods</jats:title><jats:p>Overall, 252 human sera were used to inoculate a total of 1165 RDTs for training and validation purposes. We then conducted two field studies to assess the performance on real-world scenarios by testing 172 antibody RDTs at two nursing homes and 96 antigen RDTs at one hospital emergency department.</jats:p></jats:sec><jats:sec><jats:title>Results</jats:title><jats:p>Field studies demonstrated high levels of sensitivity (100%) and specificity (94.4%, CI 92.8%-96.1%) for reading IgG band of COVID-19 antibody RDTs compared to visual readings from health workers. Sensitivity of detecting IgM test bands was 100%, and specificity was 95.8% (CI 94.3%-97.3%). All COVID-19 antigen RDTs were correctly read by the app.</jats:p></jats:sec><jats:sec><jats:title>Conclusions</jats:title><jats:p>The proposed reading system is automatic, reducing variability and uncertainty associated with RDTs interpretation and can be used to read different RDT brands. The web platform serves as a real-time epidemiological tracking tool and facilitates reporting of positive RDTs to relevant health authorities.</jats:p></jats:sec>

Topics
  • impedance spectroscopy
  • size-exclusion chromatography
  • chemical ionisation