Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bissaker, Edward J.

  • Google
  • 1
  • 2
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Connectivity aware simulated annealing kernel methods for coke microstructure generation1citations

Places of action

Chart of shared publication
Lamichhane, Bishnu
1 / 2 shared
Jenkins, David
1 / 6 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Lamichhane, Bishnu
  • Jenkins, David
OrganizationsLocationPeople

article

Connectivity aware simulated annealing kernel methods for coke microstructure generation

  • Bissaker, Edward J.
  • Lamichhane, Bishnu
  • Jenkins, David
Abstract

<jats:p>A vital input for steel manufacture is a coal-derived solid fuel called coke. Digital reconstructions and simulations of coke are valuable tools to analyse and test coke properties. We implement biased voxel iteration into a simulated annealing method via a kernel convolution to reduce the number of iterations required to generate a digital coke microstructure. We demonstrate that voxel connectivity assumptions impact the number of iterations and reduce the normalised computation time required to generate a digital microstructure by as much as 70%. ReferencesL. De Floriani, U. Fugacci, and F. Iuricich. Homological shape analysis through discrete morse theory. Perspectives in Shape Analysis. Ed. by M. Breuss, A. Bruckstein, P. Maragos, and S. Wuhrer. Springer, 2016, pp. 187–209. doi: 10.1007/978-3-319-24726-7_9 M. A. Diez, R. Alvarez, and C. Barriocanal. Coal for metallurgical coke production: predictions of coke quality and future requirements for cokemaking. Int. J. Coal Geol. 50.1–4 (2002), pp. 389–412. doi: 10.1016/S0166-5162(02)00123-4 D. T. Fullwood, S. R. Kalidindi, S. R. Niezgoda, A. Fast, and N. Hampson. Gradient-based microstructure reconstructions from distributions using fast Fourier transforms. Mat. Sci. Eng. A 494.1–2 (2008), pp. 68–72. doi: 10.1016/j.msea.2007.10.087 E.-Y. Guo, N. Chawla, T. Jing, S. Torquato, and Y. Jiao. Accurate modeling and reconstruction of three-dimensional percolating filamentary microstructures from two-dimensional micrographs via dilation-erosion method. Mat. Character. 89 (2014), pp. 33–42. doi: 10.1016/j.matchar.2013.12.011 Y. Jiao, F. H. Stillinger, and S. Torquato. Modeling heterogeneous materials via two-point correlation functions: Basic principles. Phys. Rev. E 76.3, 031110 (2007). doi: 10.1103/PhysRevE.76.031110 H. Kumar, C. L. Briant, and W. A. Curtin. Using microstructure reconstruction to model mechanical behavior in complex microstructures. Mech. Mat. 38.8–10 (2006), pp. 818–832. doi: 10.1016/j.mechmat.2005.06.030 Z. Ma and S. Torquato. Generation and structural characterization of Debye random media. Phys. Rev. E 102.4, 043310 (2020). doi: 10.1103/PhysRevE.102.043310 F. Meng, S. Gupta, D. French, P. Koshy, C. Sorrell, and Y. Shen. Characterization of microstructure and strength of coke particles and their dependence on coal properties. Powder Tech. 320 (2017), pp. 249–256. doi: 10.1016/j.powtec.2017.07.046 M. G. Rozman and M. Utz. Uniqueness of reconstruction of multiphase morphologies from two-point correlation functions. Phys. Rev. Lett. 89.13, 135501 (2002). doi: 10.1103/PhysRevLett.89.135501 T. Tang, Q. Teng, X. He, and D. Luo. A pixel selection rule based on the number of different-phase neighbours for the simulated annealing reconstruction of sandstone microstructure. J. Microscopy 234.3 (2009), pp. 262–268. doi: 10.1111/j.1365-2818.2009.03173.x S. Torquato. Microstructure characterization and bulk properties of disordered two-phase media. J. Stat. Phys. 45.5 (1986), pp. 843–873. doi: 10.1007/BF01020577 S. Torquato and H. W. Haslach Jr. Random heterogeneous materials: microstructure and macroscopic properties. Appl. Mech. Rev. 55.4 (2002), B62–B63. doi: 10.1115/1.1483342 S. Torquato and C. L. Y. Yeong. Reconstructing random media.II: three-dimensional media from two-dimensional cuts. Phys. Rev. E 58.1 (1998), pp. 224–233. doi: 10.1103/PhysRevE.58.224 on p. C128). C. L. Y. Yeong and S. Torquato. Reconstructing random media. Phys. Rev. E 57.1, 495 (1998). doi: 10.1103/PhysRevE.57.495</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • phase
  • theory
  • simulation
  • strength
  • steel
  • two-dimensional
  • annealing
  • random
  • microscopy