People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kale, Sa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2022Comprehensive Evaluation of Materials for Small Wind Turbine Blades Using Various MCDM Techniquescitations
- 2019A research on evaluation of small wind turbine blades of different thicknesses
- 2017Structural optimization of rear bumper fog lamp punching machine
- 2017Weight and Cost Reduction of A Small Wind Turbine Blade
- 2016Vibration analysis of a small wind turbine bladecitations
- 2016Numerical and experimental stress analysis of a composite leaf springcitations
- 2015Materials for small wind turbine blades
- 2014Selection of Material for Wind Turbine Blade by Analytic Hierarchy Process (AHP) Methodcitations
Places of action
Organizations | Location | People |
---|
article
Numerical and experimental stress analysis of a composite leaf spring
Abstract
Automobile sector is always focusing on enhancing level of comfort, fuel economy, customer satisfaction and safety. Vehicle weight reduction increases the overall fuel efficiency. Use of composite materials has made it possible to reduce the weight of the vehicle, without reduction in load carrying capacity. Now a day's manufacturers and researchers are trying to replace conventional material parts with composites. The composite materials have more elastic strain energy storage capacity and high strength to weight ratio as compared to steel. This paper is related to Numerical and experimental strength analysis of suspension leaf springs for a light motor vehicle made of composite materials. Two materials Glass Fiber Reinforced Plastic (GFRP) and Carbon Fiber Reinforced Plastic (CFRP) are selected for manufacturing of leaf spring. The strength of these composite depends on angle orientation, volume to weight ratio of reinforcement and length to depth ratio of fiber. In this work two leaf springs made of GFRP and a sandwich of CFRP and GFRP are developed. Numerical and experimental static stress analyses are carried out for these two springs. These results are compared with analytical results of conventional metal spring. The comparison shows that composite material springs have compatible strength to withstand load. Comparative results for weight, cost and deformation are presented at the end of the paper.